【摘 要】
:
缺陷检测是常见且重要的工业场景,由于待检测产品及其缺陷的多样性,传统的机器学习算法在可复用性上表现不佳。卷积神经网络以其强适应性和转换简单等优点在缺陷检测领域得到了迅速而广泛的运用。然而,由于图像表面众多像素级的缺陷特征的提取非常困难,即使特征金字塔可以针对小缺陷特征进行提取,而不同尺度特征图耦合时会损失大部分微小缺陷的特征,使得大背景下微小缺陷检测存在困难,性能难以提升,成为缺陷检测领域研究的热
论文部分内容阅读
缺陷检测是常见且重要的工业场景,由于待检测产品及其缺陷的多样性,传统的机器学习算法在可复用性上表现不佳。卷积神经网络以其强适应性和转换简单等优点在缺陷检测领域得到了迅速而广泛的运用。然而,由于图像表面众多像素级的缺陷特征的提取非常困难,即使特征金字塔可以针对小缺陷特征进行提取,而不同尺度特征图耦合时会损失大部分微小缺陷的特征,使得大背景下微小缺陷检测存在困难,性能难以提升,成为缺陷检测领域研究的热点。本文借助VOC2012、VOC2007公开数据集对Faster-RCNN、YOLO、SSD等算法进行了对比分析,发现针对尺度较大的检测对象,SSD算法在检测速度和精度上具有优异的性能。但是,对于大背景下的微小缺陷,SSD算法存在以下问题:使用VGG16作为特征提取网络容易丢失微小缺陷的特征信息;多尺度特征图中低层特征图缺乏边缘信息和抽象信息导致语义不足,由于高层特征图的尺度较大,难以检测小缺陷;选择的多尺度特征图中仅特征图Conv4_3作为小缺陷检测特征图,数量不足。针对以上问题,提出并设计了BSSD算法,该算法采用Res Net34提取更多微小缺陷信息解决特征提取问题;选择7个多尺度特征图,增加检测小缺陷特征图的数量;设置回溯层,在多尺度特征图输入分类网络之前将高层网络的抽象信息融合到浅层网络以增强抽象特征的表达能力;融合时设置3种可选的上采样方法:线性插值法、反卷积法与反池化法,实验证明反卷积法效果最好;分类网络的编码层使用1×1卷积代替3×3卷积进行特征转换,避免padding的干扰;同时借助组合数据增广策略改善小规模数据集的训练性能。为了验证算法的性能,采集东莞某工厂生产线上手机表面图片进行标注,制作PSDD数据集,并结合公开数据集VOC2012对算法进行了测试对比。BSSD算法在两种数据集上的m AP分别为82.3和76.5,FPS别为18和16。结果表明BSSD虽然在普通图片精度不明显,但小目标检测精度结果显著。在VOC2012六类小目标上m AP度也表现出显著优势。同时与SSD的改进算法DSSD、RSSD、FSSD对比,实验数据表明BSSD算法精度上可以与DSSD媲美,速度与FSSD相差不大。最后,针对手机表面缺陷检测,设计一套集图像数据管理、网络训练、缺陷检测结果展示、分析、预警于一体的缺陷检测软件系统,成功运用到东莞某工厂手机检测流水线中,效果良好。
其他文献
互联网和大数据时代的到来,大量信息以非结构化的电子文档形式展示,如何高效地结构化这些文本数据成为一个亟待解决的问题,信息抽取则在这一背景下应运而生。信息抽取研究旨在低成本地从复杂、冗余的文本中提取出高质量、结构化的可利用数据,极大地推动了自然语言处理研究的发展。关系抽取通过挖掘出实体间的关系类型信息,形成规则的实体关系三元组,从而将非结构化文本构建成结构化文本。其作为信息抽取的核心任务之一,在知识
根据世界卫生组织发表的统计,癌症已经成为造成人类死亡的第二大元凶,而在各种肿瘤中,脑肿瘤是最致命的类型之一。对于脑肿瘤患者而言,及早地确定脑肿瘤的类型对于制定专门的治疗方案和治疗后的存活率极其重要。医学影像技术通常被选为鉴别脑肿瘤类型的首选技术。在过去,脑肿瘤的诊断需要医生阅读肿瘤图像,然而人的精力是有限的,大量的重复工作会带来诊断错误率提升进而加重医患矛盾。为克服这些问题,以病理图像为基础的计算
传统的机械手路径规划方法通常需要建立精确的数学模型,只能用于固定的任务环境,缺乏泛化能力。近年来,深度强化学习(Deep Reinforcement Learning,DRL)在机器人博弈等领域取得了突破性的进展,研究人员开始探索将DRL应用于机械手控制的可行性。另外,虽然DRL在单智能体环境下的研究逐渐趋于成熟,但在多智能体场景中仍然有较大的发展空间。与单智能体环境相比,多智能体环境最大的不稳定
为了适应日益增长的三维动画、游戏、虚拟现实、医学图像重建和文物保护等领域的建模需求,针对自动三维重建方法的研究日趋活跃。本文以基于多传感器信息的三维重建算法为研究课题,重点研究了基于单目或多目彩色图像的三维对象重建算法以及基于深度信息的三维场景检索算法。由于传统算法需要大量的图像数据作为输入,且在运行速度上还不能令人满意,因此随着深度学习技术的快速发展,越来越多的研究人员开始尝试使用深度神经网络来
随着硬件水平的不断提升与相关研究的持续推进,图像融合技术在各个领域的应用都在不断深入发展。同时,随着计算机算力水平的不断提升,卷积神经网络理论也在迅猛发展,已经被广泛应用于目标识别、人脸识别等多个领域。一方面,引入卷积神经网络可以改进图像融合中的特征提取与分配环节,在此条件下重新设计的图像融合框架可以提升融合图的融合质量。另一方面,现有的相关论文鲜有基于卷积神经网络设计的三通道或多通道的图像融合模
边缘计算拥有低时延和高安全等诸多优点,边缘计算可以看作“微云”,相比云来说其本身的计算资源、存储资源都更受到局限。在边缘设备上会有多种异构终端接入、异构数据存储且多种应用运行其上,边缘设备提供安全的支持系统是边缘设备安全的基础。Docker是基于“沙箱机制”的一种轻量级容器引擎,将底层文件、镜像和应用程序等统一打包的虚拟化技术其具有统一的标准化打包流程、强大的可移植性和隔离各个应用的安全性等优点,
随着人机交互技术的不断发展,Web应用服务性能与用户体验已经成为衡量Web应用运行质量的重要因素。用户体验评价方面,除了渲染时延这一常规指标以外,因用户因体验不佳而产生的异常行为也是重要的评价参考,而Web应用服务性能评价指标则通常包括云端服务响应请求的平均速率、稳定程度以及渲染端解析服务器响应资源的效率。用户在访问Web应用时产生的用户行为与Web应用服务性能之间的关系密不可分。例如:当请求服务
调制解调是信号检测和信号解调之间的关键技术,在非合作通信中起着至关重要的作用。调制识别技术在民用和军事领域都应用广泛,怎样在实际通信传输过程中,实现对接收信号调制方式的准确识别,是目前在调制识别技术当中迫切需要解决的难题。本文针对传统调制识别方法中所存在泛化能力弱、鲁棒性差等缺点,将深度学习应用到调制识别领域,并选用了模型更小的轻量级神经网络作为识别模型,提升了准确率的同时极大地减少了计算量,本文
石油是维持现代社会正常运转的重要能源之一,石油开采过程中一旦发生泄露,将会造成严重的生态灾害和巨大的资源损失。近年来视频监控技术在油田安全巡检中引起广泛的关注,由于视频监控图像具有直观方便的特点,在石油安全巡检中引入计算机视觉技术进行在线监控,及时发现油田采油作业过程中可能出现的故障,可以节省人力资源的消耗并保障安全巡检的质量和效率。传统的漏油检测采用LDR(Low Dynamic Range I
近些年来,运动捕捉技术在多个领域获得了越来越广泛地应用。基于惯性测量的运动捕捉系统相较于其他运动捕捉设备,成本低廉、使用方便、稳定性强,具有很高的研究价值。本文基于惯性测量技术设计研究了一种价格低廉、实时性良好的人体运动捕捉系统。本文的主要研究工作具体如下:1.分析了人体姿态跟踪系统的具体需求,并根据使用需求给出了系统的整体设计框架,完成了系统的硬件选型与制作以及上位机的软件选取。2.对三种传感器