社区结构感知的社交推荐方法研究

来源 :北京交通大学 | 被引量 : 0次 | 上传用户:huangwj03
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着科学技术的快速发展,海量数据充斥着人们的生活,信息过载问题日益严重。推荐系统逐渐成为人们获取个性化信息的有力工具,帮助人们在海量信息中获取有用信息,并且已经成功应用到各行各业。基于协同过滤的推荐方法通过利用用户和项目的行为数据来学习用户和项目的特征表示,逐渐成为主流的推荐方法。但是现实世界中用户-项目评分矩阵具有高度稀疏而且分布不均匀的特点,当推荐系统仅考虑用户和项目之间的评分矩阵信息时,其性能很容易受限于数据稀疏和冷启动问题,使得用户无法得到满意的推荐内容。当今已处在Web2.0时代,越来越多的用户参与到在线社交活动当中,用户之间产生了大量的社交关系,这些独立的社交数据为解决协同过滤方法固有的数据稀疏和冷启动问题以及提升推荐系统的性能提供了契机,一些研究者开始在传统推荐系统中加入社交信息来提高模型性能。此外,用户之间的社交网络中存在大量的社区结构,在社区内考虑用户之间的社交关系尤为重要。本文在现有工作的基础上,主要研究社区结构感知的社交推荐方法。主要研究内容和研究成果总结如下:(1)提出了一种融合重叠社区正则化及隐式反馈的协同过滤方法OCRIF。该方法首先利用社区发现算法将用户进行社区划分并允许用户可同时归属于不同的社区,以充分挖掘用户潜在的社区信息;其次,OCRIF模型中融入了社区内的社交隐式反馈信息以及商品隐表示一致性约束;最后,结合网络表示学习方法,我们给出了更有效的用户-社团隶属度计算方法以及用户之间相似度计算方法,将OCRIF模型扩展为OCRIF+模型。在3个公开的数据集上实验表明:我们提出的两个方法要优于以往的同类推荐算法。(2)提出了一种融合社区影响力扩散和用户兴趣扩散的图注意力社交推荐方法GASC。该方法对用户与用户之间社交网络中的高阶社会影响扩散和用户-项目兴趣网络中的兴趣扩散进行建模,首先利用社区发现算法将用户划分到所属社区中,考虑在社区中更细粒度的高阶社会影响扩散。另外,模型中设计了多层注意力网络,以区分社区内不同邻居节点、不同社区以及不同异质网络图对用户和项目低维嵌入表示的不同影响。最后,在模型中引入了区分不同阶影响的注意力网络。在两个公开的数据集上实验表明:我们提出的方法优于先前提出的同类推荐算法。
其他文献
全景视频覆盖了360°×180°范围中的场景信息,为用户提供了无死角沉浸式体验,成为目前虚拟现实视频应用的主要内容源。由于全景视频分辨率高,体积大,若直接用于传输,将给网络造成较大压力。考虑到人眼当前视口大小是有限的,为了减少网络带宽消耗,现有的方案主要是基于视口编码及传输,这种方案减少了视频传输时所占带宽,但是在用户切换视口时会带来延迟问题,影响沉浸式体验。本文提出全景视频超分辨率算法以缓解延迟
人口增长和城市化水平的提高不断刺激着建筑需求,大规模的建设带来巨大的资源压力,也对环境保护带来严峻的挑战。兼顾效率和环境友好的装配式建筑日渐成为中国建筑业发展的主流。在国家大力推广信息化、市场化的大背景下,总承包模式和BIM技术的应用,也成为装配式建筑发展的大势所趋。工程计价是装配式建筑发展的重要环节,现行的装配式建筑计价方式以工程量清单计价为主,但由于计价依据不完善、信息化应用不深,装配式建筑造
随着深度学习的兴起,自然语言处理在中文领域快速发展,其中文本表征是不可或缺的基础编码层。成语在书面和口语中使用频繁,在中文表意中有着非常重要的作用,地位不可替代。因此,高效的成语表征对中文自然语言处理的进一步发展至关重要。成语是中文独特的语言现象,它固定的四字结构,形式简洁,内容丰富,带来了两大特性:非语义合成性和意义整体性,即:它的意义不能简单通过字的含义相加,而是一个整体。这两个特点导致目前主
针对铁路货车的行车安全检测对于保证货车平稳运行至关重要,而轮对的安全状况是货车运行和运维过程中的重点关注问题。现阶段轮对踏面损伤检测在非营运状态下进行,检测速度慢、效率低、耗费大量人力物力,需要探索更为快速高效便捷的轮对踏面检测方法。本文围绕铁路货车轮对踏面损伤机理、温度场有限元仿真、运动模糊图像复原、图像特征提取等方面展开理论和实验研究。为检测出运动状态下轮对踏面的损伤情况,针对运动模糊红外图像
近年来,随着计算机和通信技术的迅速发展,现实生活场景中涌现了不同的时空众包平台,例如滴滴、美团外卖等。不同于传统的众包平台,时空众包平台在任务分配阶段需要获取众包工人的真实位置以实现有效的任务分配。由于大多数时空众包平台是不可信的,众包工人的位置信息容易泄露,导致工人不愿意参与任务分配。因此,在时空众包中保护工人的位置隐私显得尤为重要。除了工人位置外,任务位置在分配阶段也应被保护,因为众包平台可能
无人驾驶技术与云计算、人工智能等技术的深度融合,为智能交通领域的发展带来深刻的变化。无人驾驶的核心技术主要包括环境感知、定位与建图、规划与决策和智能控制等,而高精度地图是L4级及以上无人驾驶的核心技术。虽然国内外学者针对高精地图生成方法的研究取得丰硕的成果,但其过程仍存在自动化程度低、更新速度慢的问题。针对这一现状,论文针对基于3D点云的高精地图的环境图层自动生成问题,采用基于深度学习的点云语义分
近年来伴随着C-V2X(Cellular Vehicle to Everything)等车联网技术的快速发展,自动驾驶和智能驾驶等智能交通业务需求不断增加,催生了一系列延迟敏感型、计算密集型的车联网智能应用。云计算架构因为日渐拥塞的回程链路和距离用户过远导致的服务响应延迟而难以满足智能交通要求的高可靠低时延。移动边缘计算(Mobile Edge Computing,MEC)应运而生为新的技术应用范
随着信息技术迅速发展以及网络服务的普及,数据规模实现井喷式发展,社会逐步进入了信息化的大数据时代。作为解决信息过载的重要方法,推荐系统得到了迅速地发展,同时也在人类生产、生活的各个方面发挥着重要的作用。多行为推荐系统作为推荐系统的一个分支,虽然起步较晚,但是由于多行为数据的丰富性及应用场景的广泛性,近些年来多行为推荐系统也得到了社会各界人士的青睐。目前多行为推荐系统在如何合理利用行为之间多等级偏好
计算机断层成像(Computed Tomography,CT)因为具有无损、高分辨、没有重叠影像等诸多优点,被广泛应用于安检、医疗和工业等领域。通常,传统CT系统需要完全角度投影数据来进行图像重建。然而,由于实际条件的限制,有时无法获得完全角度投影数据,由此引出了有限角度投影数据CT图像重建问题。理论上,有限角图像重建问题是一个不适定的问题,且这种不适定性会随着缺失角度的增加而变得更加严重。因此,