复杂网络上的演化博弈

来源 :兰州理工大学 | 被引量 : 3次 | 上传用户:awangvip
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
现实世界的复杂性系统可以用复杂网络来描述,博弈论在生物、经济等系统中有着广泛应用,因此复杂网络理论与博弈论的结合给出了一个研究复杂性系统的新思路。和传统的物理系统相比,复杂网络上的演化博弈给出了更为丰富的物理现象。   本文通过蒙特卡罗数值模拟方法研究了两个双层网络上的囚徒困境演化博弈模型,其中底层的相互作用网络为二维格子网络,顶层的策略学习网络为二维Newman-Watts小世界网络。两层网络之间的差异程度可以用p来衡量,即参与者有机会模仿除有直接相互博弈关系外的其它博弈者(捷径邻居),而模仿捷径邻居的概率为p/(1+p)。值得注意的是,本文中顶层网络的选取与M.Ifti等和Wu等用到的学习网络有很大的不同。在他们的学习网络中,策略学习邻居随着获取信息能力的增大只能从最近邻开始依次增大到次近邻、次次近邻等。而在本文的Newman-Watts小世界网络网络中,捷径邻居可以是除最近邻外整个网络中任意一个可能的参与者,从这个角度来看本文的博弈者收集信息的能力要“强于”M.Ifti等和Wu等用到的网络,但是当p=1时,整个网络的捷径邻居数才和原相互作用邻居数相等,从这个角度说本文中的网络获得的信息量要“远少于”M.Ifti等和Wu等用到的网络。   模型Ⅰ为双层网络上的两策略的囚徒困境博弈模型。通过研究表明当模仿捷径邻居的概率提升到10%以上就能有效的提高合作态密度,即捷径邻居的存在有利于合作现象维持。模型Ⅱ为双层网络上的有志愿者参加的囚徒困境博弈模型。研究表明不存在捷径邻居时,且对较弱的背叛诱惑,随着噪声水平的变化合作态密度出现多个峰值,而较大的背叛诱惑值下只有一个极大值。当存在捷径邻居时,原来的多峰相干共振现象被单峰的共振现象代替,对于较大的背叛诱惑,当p足够大时,随着噪声水平的变化合作态密度会出现两个极大值。在足够大的背叛诱惑下,增大p使得各种策略密度发生剧烈的震荡直到进入只存在单一策略态的“僵态”。
其他文献
近年来,宽带半导体材料倍受人们的关注,其中ZnO由于具有较大的禁带宽度和较高的受激增益等特性,使得人们对其在光信息处理、光储存、集成光学、短波长激光二极管的开发及相关的
Solid-state laser became these days of great importance where it involved in manyapplications because several major innovations expanded their capability.Among
银纳米颗粒在太阳能电池领域极具应用前景,受到广泛关注。例如,利用纳米银颗粒的局域表面等离子体共振效应实现对入射光子的选择吸收、增强吸收等效应,可以有效地拓宽太阳能电池
人类基因组计划完成后,获得了海量的DNA序列数据,基于这些数据人们在基因表达方面开展大量的研究工作。漫长的研究过程使我们逐步认识到,基因组DNA的表达调控非常复杂。相关研究