论文部分内容阅读
随着能源短缺和环境污染问题的日趋严重,大规模新能源并网已成为电力系统发展的主要趋势。但是,大规模新能源发电在带给我们大量清洁能源的同时,也带来了更多的随机因素,使电网的运行状态更加复杂。概率潮流是电网规划和运行状态分析的重要工具,而目前的概率潮流算法存在计算误差大、运行效率低及未全面考虑系统中多种随机变量等缺点。更重要的是,目前的概率潮流算法往往忽略了输入变量相关性对电力系统的影响。相关研究表明,同一地区的风速具有一定的相关性,随着风电装机容量不断增大,其相关性对电力系统的影响成为一个不可忽视的问题。因此,为了解决目前概率潮流算法存在的以上问题,本文提出了一种兼具精确性和高效性的混合概率潮流算法,并在此基础上,结合Cholesky分解法研究了风电相关性对电力系统的影响。首先,本文提出了一种考虑连续型和离散型随机变量的混合概率潮流算法。该方法将半不变量法和多次确定性潮流计算相结合。在IEEE-14节点系统中,与蒙特卡洛法和半不变量法对比,验证了所提算法的计算精度和运行效率。在IEEE-14节点系统中,研究了两种情况对电力系统的影响:(1)单个离散型随机变量在不同额定功率下对系统的影响;(2)如何处理系统中存在多个离散型随机变量的问题。在IEEE-118节点系统中,验证了所提算法的精确性、高效性和适用性。其次,本文在所提混合概率潮流算法的基础上,结合Cholesky分解法研究了风电相关性对电力系统的影响。第一,分别在系统中存在两个和三个风场时,验证了Cholesky分解法生成具有任意相关性风电数据的准确性。第二,在IEEE-14节点系统中,验证了所提算法解决风电相关性问题的准确性。第三,在IEEE-14节点系统中,研究了风电相关性对系统节点电压、支路潮流均值和标准差的影响。最后,总结了本文混合概率潮流算法和风电相关性研究所得出的结论。