【摘 要】
:
本文主要研究了黎曼流形及特殊的黎曼流形-Einstein流形中的h-近Ricci孤立子及梯度h-近Ricci孤立子.利用黎曼流形中的恒等式、散度定理、Schur引理及Hopf强极值原理,对h-近Ricci孤立子及梯度h-近Ricci孤立子的刚性进行了讨论.具体结论如下.1.研究了紧致条件下的h-近Ricci孤立子及梯度h-近Ricci孤立子.首先,得到具有非平凡共形向量场的紧致h-近Ricci孤立
论文部分内容阅读
本文主要研究了黎曼流形及特殊的黎曼流形-Einstein流形中的h-近Ricci孤立子及梯度h-近Ricci孤立子.利用黎曼流形中的恒等式、散度定理、Schur引理及Hopf强极值原理,对h-近Ricci孤立子及梯度h-近Ricci孤立子的刚性进行了讨论.具体结论如下.1.研究了紧致条件下的h-近Ricci孤立子及梯度h-近Ricci孤立子.首先,得到具有非平凡共形向量场的紧致h-近Ricci孤立子等距于欧氏球面Sm.其次,运用黎曼流形中的基本方程及缩并的第二Bianchi恒等式,得到满足适当积分条件的紧致梯度h-近Ricci孤立子等距于欧氏球面Sm.最后,运用散度定理及Schur引理,得到满足适当积分条件的紧致h-近Ricci孤立子及梯度h-近Ricci孤立子为平凡的.2.研究了完备非紧情形下的h-近Ricci孤立子及梯度h-近Ricci孤立子.运用第一部分结论的研究思路方法及Hopf强极值原理.首先,得到Ricci曲率满足适当不等式条件的完备非紧h-近Ricci孤立子为平凡的.其次,得到满足适当不等式条件的完备非紧梯度h-近Ricci孤立子也为平凡的.3.研究了特殊的黎曼流形-Einstein流形中的完备梯度h-近Ricci孤立子.运用Ricci恒等式的同时,对Ricci曲率恒为零的Einstein流形,证明了完备梯度h-近Ricci孤立子等距于Rm.
其他文献
本文首先引入了χ-强n-Gorenstein投射模和平坦模的概念,给出了它们的一些性质和等价刻画.其次讨论了在一个短正合列中,三个模的χ-强n-Gorenstein投射(平坦)性质之间的关系,证明了模的χ-Gorenstein投射(平坦)维数不超过n当且仅当是-强n-Gorenstein投射(平坦)模的直和因子.最后,在局部化环和多项式环上分别讨论了模的这些性质.
设S和R是环,sCR是忠实的半对偶化双模,χ是一个左S-模类.作为GC-内射左R-模,GC-FP-内射左R-模和GC-弱内射左R-模的统一推广,本文引入了GC-χ-内射模的概念.在χ满足一定条件的情况下,讨论了GC<-χ-内射模的一些性质;给出了 Gc-χ-内射模的一些等价刻画;建立了相关模类间的Foxby等价;证明了三元组(gCχI(R),cores χICxp(R),χICxp(R))是弱余A
本学位论文应用Obata方程,散度定理,截断函数等方法,集中研究近Ricci孤立子的几个刚性问题.分别在孤立子场是共形向量场,Weyl共形曲率张量4阶散度非负,以及逐点拼挤条件下,得到了近Ricci孤立子的一些刚性结果.具体内容如下:1.研究了具有共形孤立子场的正常(Proper)近Ricci孤立子,用Obata方程的方法,得到孤立子或是等距于Rn,Sn及Hn之一;或是等距于卷积流形R×ξM,其中
设R是一个环,χ是一个左R-模类.本文首先引入了Gorenstein-χ-内射模的概念,在χ关于合冲封闭的条件下讨论了Gorenstein-χ-内射模的等价刻画和一些性质,利用Gorenstein-χ-内射模给出了R是左自χ-内射环的等价刻画.其次引入了Gorenstein-χ-平坦模的概念,在χ关于合冲封闭的条件下给出了Gorenstein-χ-平坦模的等价刻画,探讨了Gorenstein-χ-
设m,n是非负整数,U是左R-模.本文讨论了相对于模U的(m,n)-投射、内射和平坦的同调性质.我们首先引入了U-(m,n)-内射模与U-(m,n)-平坦模的概念,探讨了它们的性质,并借助Ext函子与Tor函子给出了任意模是U-(m,n)-内射模与U-(m,n)-平坦模的等价刻画;其次,借助U-(m,n)-内射模与Ext函子定义了U-(m,n)-投射模,利用余挠对刻画了它的性质;最后,引入了强(m
本文主要研究了相对于模类的严格的Mittag-Leffler模的同调性质.我们首先考虑了Gorenstein同调模上严格的Mittag-Leffler模,证明了当R是左Noether环时,若任意Gorenstein内射模的示性模是Gorenstein平坦模且⊥GL关于直积封闭,则GL(?)SML(⊥GL);其次考虑了Ding同调模上严格的Mittag-Leffler模,在Ding-Chen环上证明
设S是幺半群,A是S-系,B为A的真子系.本文研究了一般性的融合余积A(?)BA.若A为S,B为S的真右理想,则融合余积A(?)BA就是研究幺半群同调分类的工具A(I).本文讨论了A(?)BA满足条件(P),条件(E),挠自由,主弱平坦等性质的等价刻画,推广了A(I)的相应结论.特别地,本文给出了一般融合余积A(?)BA的若干应用,包括证明一些重要结果的主要工具.另一方面,设A为任意S-系,B为A
设X表示包含分次投射模的分次模类,Y表示包含分次内射模的分次模类.本文研究了分次环上的Y-Gorenstein分次内射模,X-Gorenstein分次投射模和Y-Gorenstein分次平坦模.首先,我们给出了Y-Gorenstein分次内射模和X-Gorenstein分次投射模的定义和一些性质;其次,利用遗忘函子U和它的右伴随函子F讨论了Y-Gorenstein分次内射模(X-Gorenstei
相对于半对偶化模C,本文首先引入了强Gorenstein C-投射(C-内射,C-平坦)模,讨论了这类模的一些性质.给出了它们的一些等价条件,证明了:(1)设M是强Gorenstein C-平坦模.则M+是强Gorenstein C-内射模.(2)设R是Noether环,如果M+是强Gorenstein C-内射模,那么M是强Gorenstein C-平坦模.其次,讨论了模M的强Gorenstei
本文主要研究了模范畴和带有E-三角真类ξ,且具有足够多的ξ-投(内)射对象的E-三角范畴中的强余纯投射对象及其同调性质,全文共由两部分组成.首先,我们讨论强余纯投射性在优越扩张,Frobenius扩张,局部化扩张等环扩张下的保持性.其次,我们在E-三角范畴中引入了ξ-强余纯投射对象,研究了ξ-强余纯投射对象的一些基本同调性质.证明了ξ-强余纯投射对象类关于有限直和,直和项封闭.进一步说明了在ξ中任