论文部分内容阅读
微生物浸矿技术在铜、金等金属矿物的浸出领域得到广泛的应用和发展,对其浸矿机理也开展了深入研究,但是在铀矿浸出领域中浸矿过程相关机理、影响因素、浸出动力学、电化学行为等研究不足。本文为了研究铀矿微生物浸出过程中所发生的相关机理,以及提升铀矿的浸出效率,以南方某铀矿区沥青铀矿石为研究对象,A.ferrooxidans和At.thiooxidans混合菌群为试验菌种,采用摇瓶浸出试验结合形貌分析与物相表征等检测方法研究了铀矿在铁和细菌不同体系中浸出效果及铀矿浸出界面特性,并系统研究铀矿微生物浸出影响因素及浸出动力学;运用电化学方法揭示铀矿浸出过程电荷传递和表面钝化等电化学行为。有菌有Fe3+、无菌有Fe3+等不同体系铀浸出效果研究表明,铀浸出率依次为:有菌有Fe3+(20%细菌+1.0 g/L Fe3+)97.01%>无菌有Fe3+(1.0 g/L Fe3+)87.54%>有菌有Fe2+(20%细菌+1.0 g/L Fe2+)81.11%>无菌无铁(稀硫酸)63.59%,细菌存在有利于铀的浸出,铁在生物浸出过程中具有重要作用,铀矿生物浸出以间接作用为主。浸出前后矿样SEM和EDS分析表明,有菌有Fe3+体系的浸渣表面形貌受到腐蚀破坏最严重,裂隙发育有利于铀的溶出;XRD分析显示有铁浸出体系中均有黄钾铁矾沉淀,从而阻碍了铀矿表面与浸出剂的接触及物质传递,对铀的浸出是不利的。铀矿生物浸出影响因素试验结果表明,细菌接种量、矿浆浓度、温度为铀矿生物浸出过程中主要影响因素,pH和Fe2+浓度次之。在pH 1.8、温度30℃、细菌接种量20%、矿浆浓度10%、Fe2+浓度1.0 g/L优化条件下,铀浸出率达到99.83%。铀矿生物浸出动力学符合JMA模型,浸出过程属于扩散控制,动力学方程为-ln(1-x)=(1.49700.9027)t0.09310.2884;通过控制细菌氧化亚铁及硫酸铁氧化铀矿两个反应过程的工艺条件,有利于提高细菌氧化铀矿物的氧化速度和效率。铀矿生物浸出电化学行为研究表明,有菌有Fe3+体系中峰电流明显高于其它体系,铁的存在促进电荷转移,细菌浸出更具有优势。Tafel曲线分析表明,有菌有Fe3+的腐蚀电位和腐蚀电流密度均高于其它3种体系,而极化电阻小于其它体系,表明细菌和Fe3+对铀矿溶解具有显著的促进作用。交流阻抗研究表明,有菌有Fe3+体系的溶液阻抗RS=21.55Ω、传递阻抗R1=9.03Ω,均低于其它3种体系,铀矿更容易发生氧化溶解。降低pH或升高温度、细菌接种量和Fe2+浓度,容抗弧半径减小,传递阻抗R1减小,能够促进电极表面电化学反应的发生。但过高温度会影响细菌活性,而过高的pH和铁浓度容易造成铁胶体状物质或黄钾铁矾沉淀的生成,覆盖在矿石表面,增加矿石表面电阻,抑制电子传递,阻碍铀矿氧化溶解。上述研究获得主要成果可为铀矿的高效开采和浸出电化学行为研究提供理论参考。