Study on Some Elliptic and Parabolic Equations

来源 :华中师范大学 | 被引量 : 0次 | 上传用户:qingyou123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The work of this thesis deals with existence and nonexistence of solutions for semilinear elliptic and parabolic equations on bounded domains in RN. This is an interesting and a widely investigated field.(Ⅰ) The general form of the elliptic equations under Dirichlet boundary con-dition that we study is whereΩis a bounded domain with smooth boundary in RN(N≥3), x = (y, z)∈Ω(?) Rk×RN-k = RN-, 2≤k<N,λ∈R, t∈(0, 2) and 2*(t):=2(N-t)/N-2 is the critical Sobolev-Hardy exponent for the Sobolev embedding H01(Ω)→L2*(t)(Ω,|y|-t).Throughout the thesis the approach is variational, as (0.0.1) is the Euler-Lagrange equation of the functionalTo state the main results, it is convenient to introduce the "limiting problem" (see [36]) of (0.0.1) as Let F0∞: D1,2(RN)→R given by denote the energy functional corresponding to the limiting problem (P0∞).Our results mainly focus on existence and nonexistence of nontrivial solutions to problem (0.0.1) in a bounded domain in RN. The notion of solution we refer to is in the sense of critical points for the Euler functional related to the equation. The first result is the following global compactness theorem Theorem 0.0.1.If N≥3,λ∈R,{um} (?) H01(Ω) such that Jλ(um)≤c, DJλ(um)→0 strongly in H-1(Ω) as m→∞.Then (i) um can be decomposed as where wm→0 in H01(Ω) and u0 is a critical point of Jλ(u) and l∈N.For 1≤j≤l,Rmj→∞and{(0,zmj)} converge to (0,z0j)∈Ωas m→∞,v0j are solutions of (P0∞).The usual proof of this theorem is based on rescaling arguments. Such meth-ods have been repeatedly used to extract convergent subsequences from families of solutions or minimizing sequences to nonlinear variational problems.One of the original results of this thesis the following existence theorems Theorem 0.0.2. Assume N≥4, t=1 andλ∈(0,λ1). Then problem (0.0.1) has a positive solution in H01 (Ω).Actuary, to prove the existence result in Theorem 0.0.2, we just need com-pactness for"low-energy" (P.S)-sequences. Such a property is proven in Lemma 4.2.2. Since the cases N=3 and N≥4 are quite different, we prove the following theorem by arguments similar to those used by Jannelli in [26]. Theorem 0.0.3. If N = 3 and t = 1, problem (0.0.1) has at least one solu-tion u∈H01 (Ω) whenλ*<λ<λ1, whereλ* is a suitable positive number.Based on the result of Theorem 0.0.2 and the linking (dual) theory respec-tively, we prove the sign-changing solutions of problem (0.0.1).In a bounded domain the problem (0.0.1) does not have a solution in general due to the critical exponent. The nonexistence phenomenon is due to the lack of compactness of Jλ. We prove the following nonexistence theorem Theorem 0.0.4. Letλ≤0 andΩ(?)RN be an open set with smooth boundary and is strictly star-shaped with respect to some point(0,z0).Supposc in addi-tion (?)Ωis orthogonal to the singular set, then problem (0.0.1), has a nontrivial solution only ifΩ=RN.(Ⅱ) The general form of the parabolic equations with Cauchy boundary con-dition that we study is in Lq(RN), q=N(γ-1)/2>1,and fi(u)∈C1,(i=0,1…,n), where C0, Ci are some positive constants andβ,γ>1 are fixed parameters.The various functions are essentially pure power functions. The function f0(u) behaves lik, |u|γand the other functions fi(u) all behave like |u|β.The result without the fi is well-known and first proved in [41]. Our treat-ment differs from [17], in that we use a different space.Here, the proof of existence result is based on a contraction mapping argu-ment in an appropriate space of functions which yields global in time solutions automatically.
其他文献
千百年来,在好奇心的驱动下人类追求对物质世界的理解从未停息,尤其是对构成物质世界的最基本单元的追问尤为突出。从古希腊的哲学家德谟克利特的朴素的的原子论,再到英国物理学家道尔顿提出的近代原子论,人类在思辨上持续地进行着尝试.从1897年汤姆逊通过测量阴极射线的荷质比而发现电子,到1911年卢瑟福的α粒子散射实验证实了原子的有核模型,从实验上明确了原子是由其中心的带正电的原子核和围绕核运动的带负电的电
以江西省九江市彭泽县余家堰灌区节水配套改造工程为例,对工程概况及地质条件进行概述,基于此提出本工程施工技术难点及钢板桩施工方法应用的可行性;并对包括打桩,基坑排水及清淤,边坡开挖及修整,底板及边坡混凝土浇筑等在内的该灌区节水配套改造工程钢板桩围堰施工技术要点进行分析探讨。结果表明,必须根据工程实际及地质条件进行围堰施工技术的选择的施工方案制定;渠道钢板桩围堰施工过程中必须加强钢板桩打设、入土深度控
作为首批电力现货试点省份之一,山西省电力现货交易工作已推行了将近两年。火电企业作为参与电力市场交易的一个主体,在电能量报价中经常采用的基本报价策略——边际成本报价策略已不能满足企业追求利润最大化目标的需求。本文探索了在以利润为导向的电力现货工作中收益更大的报价策略,希望对火电机组的电能量申报工作有所启迪。
多糖结合疫苗(glycoconjugate vaccines)是指具有可变结构和数量的多糖单元与非糖单元(蛋白质或短肽、脂类)通过共价连接形成的疫苗,以蛋白质-多糖结合疫苗为主。细菌的多糖结合疫苗通过直接免疫保护和群体免疫,显著减低了由细菌侵袭性感染所致的肺炎和脑膜炎的发病率和病死率。该文从组成和免疫机制、合成方法和面临的问题等方面重点论述了已上市的以及正处于临床试验阶段的几种细菌蛋白多糖疫苗,对
随着国家高速铁路突飞猛进地发展,各类桥梁结构形式也在不断地涌现。上承式提篮拱桥具有结构简单、施工便捷、外形美观等特点,是跨越大跨度高山峡谷地带的典型桥梁代表,在中国西南地区跨越高山峡谷的桥梁设计中被广泛选用。文章依托具体工程项目,分析钢拱桥钢拱肋主弦管现有对接工艺的不足,以工装保工艺为原则,有针对性地寻找解决问题的突破点,介绍钢拱肋主弦管外置式双向调节匹配装置的自主研发背景和其详细使用方法。通过该
因外部因素影响,福建省平潭及闽江口水资源配置工程(一闸三线)竹岐泵站工程围堰未能在汛前达到填筑高程,为抢工期及降低损失,被迫在汛期施工。该文根据竹岐泵站工程围堰枯水期施工方案对汛期施工方案进行调整,提出优化戗堤断面、调整戗堤轴线、提高施工强度等措施,加快戗堤填筑速度,降低合龙难度,达到围堰安全度汛、缩短施工工期的目的,最终在洪水来临前完成戗堤合龙和围堰加高任务,挽回了至少一个水文年施工工期,缓解了
Bs物理受人关注的一个重要原因在于:它不但能够揭示距离非常小的强相互作用物理,而且是高度精确地研究CP破坏、稀有衰变以及一些味改变中性流过程的良好场所,还可以通过对B物理的研究来探寻超出标准模型得新物理存在的间接信号.近年来费米国家实验室Tevatron上的Dφ和CDF国际合作组开始了对Bs物理开始了研究,更重要的是,2009年底,欧洲核子中心(CERN)的大型强子对撞机(LHC)上的实验已正式开
本文从火力发电企业的角度出发,结合电力现货市场出清机制与火电企业经营特性,构建考虑边际成本的短期定价博弈决策模型,探索电力现货市场环境下的短期定价策略。通过算例分析发现:该模型达到了使发电企业产能有效利用的目标。在实际应用中,发电企业还需要考虑机组运行状况、市场供需关系及竞争态势、自身定价能力与经营状况等因素,对模型测算得出的参考报价进行合理的调整。本文研究有利于为发电企业竞价决策提供理论参考。
致密星由致密核物质构成,其内部存在由中子、质子到奇异性物质(比如,超子物质或奇异夸克物质)的各种可能性,由于高密低温的环境核物质还可能出现超导、超流等性质。关于致密星内部物质成分和物态至今仍是探索中的天体物理问题。致密星表面高能辐射为我们认识致密星相关物理性质和演化提供了有价值的信息。借助Chandra和XMM-Newton探测器的观测数据,我们能更有效地限制和检验物理理论对致密星内部的窥视和预测
文章分析了水利工程中运用围堰技术要点,旨在保证水利施工的有序开展,促进我国水利施工行业的健康可持续发展,为保障我国的国计民生做出重要贡献。