氢燃料电池安全监测系统设计与故障诊断方法研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:missingmm
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
氢燃料电池安全监测系统作为氢燃料电池电堆的监测模块,承担着采集电堆运行中实时参数的任务,在电堆运行的监测、控制及故障诊断中起着非常关键的作用,故障诊断保证了燃料电池系统故障的及时发现和处理,因此氢燃料电池安全监测系统和故障诊断研究具有十分重要的现实意义。作为典型的多输入输出非线性系统,氢燃料电池动力系统的正常运行和各项子系统的功能实现均依赖于安全监测系统采集的实时数据和故障诊断的反馈结果,为实现系统对监测及诊断的相关需求,以重卡燃料电池动力系统作为研究对象,研究并开发了氢燃料电池安全监测系统,故障诊断方面,对基于机器学习算法的故障诊断方法进行了研究与分析,基于无监督极限学习机(US-ELM)的特征提取能力,K-means的聚类能力及在线序列极限学习机(OS-ELM)的增量学习能力,建立了氢燃料电池的故障诊断系统,实现故障诊断模型的增量学习和在线诊断等功能。氢燃料电池安全监测系统方面,研究分析了质子交换膜燃料电池的基本原理和燃料电池动力系统的结构功能,对氢燃料电池安全监测系统的总体结构进行了设计。以总体结构设计为主干,基于对标电堆的参数及相关的参数计算结果,对氢燃料电池安全监测系统的传感器进行了选型,完成了系统相关模块的原理图设计,分析了串口通讯的相关协议,设计了系统通讯使用的数据帧,实现了氢燃料电池安全监测系统下位机的软硬件设计。在硬件设计的基础上,通过Altium Designer软件对下位机进行优化设计,绘制了相关原理图,设计并制作了下位机PCB。基于Lab VIEW构建了上位机监测系统,实现了参数监测、数据记录及故障诊断等功能。故障诊断方面,在实验采集的氢燃料电池电堆原始数据基础上,为解决故障诊断对于在线诊断、模型更新等方面的需求进行了相关研究。在分析相关诊断文献和算法原理的基础上,构建了满足增量学习和在线故障诊断需求的故障诊断系统,系统通过US-ELM进行基于流形正则的特征提取,OS-ELM实现故障诊断模型的训练与基于增量学习的模型更新,同时引入K-means聚类算法辅助增量学习过程中数据标记问题的解决。基于采集的20维原始数据构建了验证用样本集,将US-ELM与OS-ELM算法同其他同类算法进行对比分析,分析结果证明了US-ELM及OS-ELM在特征提取可视化结果、聚类准确性、故障诊断准确率及诊断用时等方面均具有一定优势,从而验证了诊断系统整体的有效性。
其他文献
质子交换膜燃料电池(PEMFC)能将氧气与氢气分子间的化学能,经过化学反应转化为电能,具有绿色、高效的优点,正成为新能源汽车的主要发展方向之一。PEMFC由多个子系统组成,意味着其会受到更多参数和变量的影响,为了使各子系统协同工作,有必要对各个系统进行深入研究。空气和氢气供应的增加可以改善燃料电池的输出特性,但是过多的气体供应将破坏阳极和阴极的压力平衡,过大的压力差甚至会导致膜破裂,严重影响正常运
我国《建筑抗震设计规范》(GB20011)(2016版)提出水平向减震系数的概念进行隔震结构的设计,减震系数可以采用时程分析法或者反应谱法两种方式计算。为了研究时程分析法与反应谱法两种方式计算减震系数的差异,本文做了以下几个方面的工作:(1)详细介绍隔震结构的发展历史以及隔震结构的基本原理,阐述隔震结构水平向减震系数的内容及流程。针对减震系数的计算,对时程分析法与反应谱法基本理论进行介绍,并且提出
氢是一种清洁、高效的可再生能源,氢气作为氢燃料电池汽车的主要燃料有较高的转化效率,与传统化石燃料汽车相比氢燃料电池汽车在减少碳排放方面具有显著优势。然而,氢气的可燃性范围广(4%-75%vol)、最小点火能极低(0.017m J),在高压储存及运输方面存在安全隐患。高压氢气泄漏多发生于高压输送管路的裂缝处,在泄漏点附近易发生燃烧或爆炸。高压氢气在泄漏口处形成高压欠膨胀射流,针对高压欠膨胀射流模型不
随着起重机租赁行业的发展,因全地面起重机更高的性能和更全面的使用环境,使其成为流动性起重机的未来发展趋势,车架结构作为其主要受力件之一,其性能的好坏关乎着全地面起重机的整车性能。为了使全地面起重机在吊载与运行过程中能发挥更大的优势,减重在各企业优化设计中扮演着重要角色。本文以TZM260全地面起重机车架结构为研究对象,通过分析车架结构的受力情况,确定其危险工况,在危险工况下应用Hyperworks
氢燃料电池汽车具有清洁高效、燃料来源多样、续驶里程长等优势,因此受到了广泛关注。控制策略作为氢燃料电池汽车核心技术之一,其优劣对于整车动力性、经济性、可靠性等各项性能都有直接影响。本文以氢燃料电池重卡为研究对象,以控制策略为核心,开展了动力系统核心部件选型与匹配、整车控制策略、能量管理策略以及整车建模与控制策略仿真优化等方面的研究,主要工作如下:(1)综合分析氢燃料电池汽车各种动力系统结构的优缺点
随着智能驾驶和无人驾驶车辆的出现和普及,人们对车辆的主动安全提出了更高的要求,而车辆的日常状态自检对车辆安全行驶意义重大。车辆悬架系统关系着车辆的驾驶安全性、操纵稳定性以及乘坐舒适性等,随着人们对车辆智能化要求的提高,必然会弱化驾驶员对悬架状态的感知,因此需要主动对悬架状态进行监控。本文针对智能驾驶车辆可能出现的悬架故障问题,提出了一种基于机器视觉的车身振动测量方法,实现对悬架状态的实时监测。研究
近年来,城镇化进程的不断完善推动中国经济快速发展,基建工程行业逐渐扩大,促使渣土车市场也在不断壮大。不断研发符合市场需求的渣土车产品,是相关企业维持和提升其市场竞争力的重要手段之一。找到恰当的产品设计切入点,继而逐渐延伸为具体设计概念是产品开发前期的工作重点,同时也会对产品的研发产生重要影响。INPD(Integrated New Product Development,一体化新产品开发)理论,能
面对全球能源危机和环境挑战,普及新能源汽车已势在必行。燃料电池汽车凭借其燃料加注快、高效无污染、续航里程长等特点,成为当前新能源汽车领域研究的热点。重卡作为我国的石油消耗大户,是所有汽车类型中污染最严重的车型,加速发展燃料电池重卡具有重要的意义。燃料电池在启动时间、输出特性以及成本控制等方面还有一定的劣势,因此,燃料电池重卡普遍采用燃料电池加辅助动力源的混合动力系统,其能量管理策略决定着如何在两种
桁架结构以其受力性能优越、适用跨度大等综合优势,在大跨空间结构得到了广泛的应用。在我国大力推行装配式钢结构建筑的今天,如何将桁架结构应用于高层民用建筑,构建新型的装配式高层钢桁架结构体系,并推广应用于示范工程,本文依托国家自然科学基金项目(51578357)的资助,针对其关键技术问题开展理论分析及试验研究,主要研究内容结论如下:(1)、在文献查阅及调研的基础上,介绍了国内外装配式钢结构建筑的发展、
波形钢腹板PC组合箱梁桥作为一种新型钢-混凝土组合结构,有效克服了传统预应力混凝土箱梁的若干缺陷,以其独特的优势得到推广应用。针对波形钢腹板PC组合箱梁结构分析所采用的空间杆系模型、平面梁格模型和实体单元模型在实际应用中均不同程度地存在着某种不适应性。近年来,一种实用精细化的模型——空间网格模型被引入到波形钢腹板PC组合箱梁的结构分析中。但当前的研究现状表明,空间网格模型应用于实桥结构力学行为分析