论文部分内容阅读
提高自动变速器效率是车辆获得同等动力性与舒适性条件下,减少污染物排放的一个重要研究方向。自动变速器能够简化操作流程,降低驾驶员疲劳度,并通过合理切换挡位使车辆动力源工作在高效区域,提高能源利用效率。自动变速器在车辆上的应用是当前时代背景下的大趋势,而自动变速器性能优劣直接影响车辆可靠性、动力性和舒适性。机械式自动变速器(Automatic Mechanical Transmission,AMT)是在手动变速器基础上添加自动选换挡模块和自动离合器控制模块,经过改进而成的自动变速器。AMT具有承载扭矩大、传动效率高、成本低廉、生产继承性好等优势,这使其在重型商用车上广泛应用,且具备在混合动力汽车及纯电动汽车上应用的潜质。而AMT存在的主要问题是动力中断及离合器开合不当带来的传动系振动。传动系动力中断与振动幅度过大或时间过长将降低车辆驾乘舒适性并增加离合器磨损,限制AMT在乘用车领域的应用。为解决上述问题,本文提出了AMT换挡辅助机构的概念,并对其进行了深入研究,主要研究内容如下:(1)提出了AMT换挡辅助机构的概念。该机构利用同步离合器取代了传统AMT离合器及同步器在换挡过程中的作用,同步离合器主动侧与发动机相连,从动侧与变速箱输出轴相连。在行星齿轮机构的传动比满足设计需求时,同步离合器的结合能够使预换入挡位齿轮与所在传动轴完成同步。该齿轮与输出轴完成锁止,发动机可直接恢复动力完成换挡。该机构一定程度上简化了换挡流程。(2)对动力总成及换挡辅助机构进行建模。动力总成模型基于Matlab/Simulink搭建,模型主要包括车辆硬件模型、驾驶员模型、行驶阻力模型等。换挡辅助机构模型是根据对应用于同轴式及双轴式AMT的两种不同换挡辅助机构结构运动学及动力学特性的详尽分析而搭建的。(3)对双轴式AMT加装换挡辅助机构进行起步最优控制。应用考虑系统扰动的LQR控制器对双轴式AMT加装换挡辅助机构进行起步控制。起步时换挡辅助机构中的电机不工作,起步过程扭矩完全由发动机提供,由同步离合器传递至输出轴。该LQR控制器设计过程中,建立了包含同步离合器角速度差及滑动摩擦功的二次型目标方程,并在汉密尔顿函数的乘子λ中引入系统干扰增强控制器鲁棒性。仿真结果展示了不同坡度下离合器传递转矩的大小以及相应情况下控制器的鲁棒性,验证了同步离合器用于配备双轴式AMT车辆起步的可行性。(4)提出了同轴式AMT加装换挡辅助机构换挡过程解耦控制。为消除或缓解换挡过程中电机力矩与同步离合器摩擦力矩的耦合作用,使离合器结合轨迹及变速箱输出扭矩同时满足参考轨迹,本文利用解耦控制器,干扰补偿器和PID反馈控制器对换挡过程进行解耦控制,仿真结果表明该控制算法能够有效的对系统控制输入进行解耦,并展示了快速换挡过程中系统的动态变化,也验证了换挡辅助机构的可行性。(5)提出了基于系统时域响应的次优PID参数自整定方法。为使解耦控制策略加强对车辆行驶状态多变、离合器摩擦系数变化等带来的系统参数摄动的鲁棒性,需要在准确估计系统状态的前提下,单独确定各状态下的PID控制参数。本文提出的PID参数自整定方法以系统输出与目标值误差的时序数据为目标函数,利用下山单纯型法自动搜索次优解。该算法可完全由计算机自动计算,极大降低了PID参数整定的工作量。仿真结果展示了迭代过程中相关参数选择对迭代结果的影响,在参数估计准确的前提下,该方法能够自动整定出满意的PID参数,有效改善系统的鲁棒性。(6)提出了换挡辅助机构齿轮啮合损失分析模型。为准确评价换挡辅助机构为系统带来的能耗损失,本文基于齿轮啮合摩擦损失一般方程、Willis方程和功率流分析法,提出了多行星排传动机构齿轮啮合摩擦损失的一般性效率分析模型,建立了行星齿轮啮合损失与工作状态及各齿轮齿数之间的数值关系。将效率模型嵌入整车模型进行仿真计算,仿真结果表明在FTP-75循环工况下,换挡辅助机构带来的齿轮啮合损失功率仅占总损失功率的0.23%左右。(7)以换挡辅助机构的效率为研究对象,提出了使离合器片摩擦损失减小的传动比匹配算法。换挡辅助机构传动比由行星齿轮机构与动力补偿齿轮对的传动比共同决定,因此该传动比不一定能够准确完成对AMT传动比的匹配。匹配到的换挡辅助机构传动比与AMT传动比差异越大,换挡过程中同步离合器的摩擦损失就会越大。该传动比匹配算法对多排简单行星齿轮机构的所有可能的传动比和相应的工作模式进行了简单的计算、存储,然后从中选择合适的传动比。本文通过理论分析以及仿真试验研究,对提出的AMT加装换挡辅助装置进行了深入研究,仿真结果表明AMT加装换挡辅助装置能够以较低的摩擦损失,简化换挡流程,补偿动力中断,对AMT未来的开发与应用具有一定的参考价值。