环路热管蒸发器和储液器可视化及仿真研究

来源 :中国科学院大学(中国科学院上海技术物理研究所) | 被引量 : 0次 | 上传用户:hjx9062
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着航天探测及电子信息产业的不断发展,传统散热器已难以满足高热流密度、高均温性的控温需求。环路热管作为一种利用工作流体流动相变实现热量传输的高效换热装置,因其具有传热能力强、柔性连接、传输距离长、可靠性高、无运动部件及无需外力驱动等优点,在航天热控领域及高热流电子产品散热领域有着广阔的应用前景。由环路热管运行原理可知,蒸发器及储液器作为环路热管的核心部件,其内部工质的流动及换热情况将直接影响整机系统的运行状况,而热载荷及工质充装量将直接影响蒸发器及储液器内部的工质分布及流动状态。基于背景需求及文献调研分析,本文从工质充装量及热载荷施加方式等方面研究了蒸发器和储液器内工质状态对环路热管包括启动、稳定运行及传热性能的影响。首先本文设计了依靠“O”形密封圈结合法兰连接方式实现密封的蒸发器及储液器耦合结构,并基于高速摄像机和常温试验台搭建了环路热管蒸发器及储液器可视化实验系统。随后通过品质因数选出高传热性能的新型环保制冷剂R245fa作为工作流体,并根据设计工况通过环路热管整机压降模型对样机在各工况下的压降进行校核,以确保样机能够正常运行。可视化实验分别研究了热载荷施加方式(底部加热、顶部加热及双面加热)、热载荷大小(10 W-50 W热载荷)及工质充装量(50%-80%工质充液率)对环路热管运行状态的影响。最后在可视化实验基础上,建立蒸发器及储液器耦合结构数学模型,模型包含多个计算域,并考虑重力因素。模型在毛细芯区域充分考虑达西渗透及毛细抽吸效果,提出依据工质气液过渡区域相梯度施加毛细动力的方法以模拟毛细芯抽吸过程。蒸发器及储液器仿真模型的建立为环路热管的设计提供了一定的参考价值。通过实验及仿真得出以下结论:热载荷施加方式直接影响热量向蒸发器内部传递过程,进而影响热管的启动过程;环路热管稳定时传热性能受加热方式及热载荷大小的共同影响,随着热载荷的增大,环路热管系统的传热性能不断提高,较低热负荷时,单侧加热的方式热管系统传热性能优于双面加热,而在较高热负荷时则双面加热的方式下热管传热性能更佳;随着热载荷的增大,蒸发器中心通道内部工质气液界面升高,成核数量逐渐增加,不同加热方式下气液界面高度和成核数量影响蒸发器向储液器的漏热,进而影响环路热管的性能。工质充装量直接影响了环路热管内工质的分布状况,从而影响环路热管的启动过程,较低充液率下冷凝器进口出现明显的温度波动现象,随着工质充装量增加,温度波动现象消失,且环路热管的启动速度变快;环路热管整机系统传热性能随充液率呈现V形变化,存在最佳充液率,实验样机最佳充液率在70%附近,最小传热热阻为0.52 K/W;工质充装量和热载荷能影响储液器内工质状态及其内部压力,进而影响环路热管整机传热性能。通过仿真模拟可知,蒸发器及储液器内部工质的流动与换热过程受到热载荷大小、回流液体流速和温度及蒸发器向储液器的漏热等多种传热机制影响,同时引液管结构对蒸发器及储液器内部工质流动及换热过程有较大影响,在环路热管设计中应采用引液管结构。
其他文献
随着医疗信息化的进程不断发展,医疗数据呈现爆炸式增长,医疗大数据的传输、存储、处理和可视化方面都面临着不小的挑战。医疗机构信息系统相互独立,在各项政策的引导下建立了电子病历系统、区域(或跨域)电子健康档案平台、区域数据中心等,病人数据量的不断增多导致医生在查询病人历史记录时存在操作繁琐、数据展现延迟、效率低等问题。如何解决医疗机构内和机构之间医疗数据的传输和存储问题已经成为当前医疗信息系统的短板。
在自由空间激光通信及量子通信中,由于空间激光束散角较小,需要利用捕获(Acquisition)、跟踪(Tracking)、瞄准(Pointing)(ATP)系统来实现通信链路的构建和保持。ATP系统通过将目标光斑在面阵探测器上的位置变化与跟踪机构形成闭环控制,以实现精确跟踪与指向,具备多信息维度、灵活变窗等优点,但是面阵探测器上信标光斑位置的探测精度将会直接影响整个ATP系统的跟踪指向精度。本文面
空间激光通信是以激光为信息载体的一种新兴的通信技术。与传统的射频通信相比,激光通信在深空超远距离传输时在通信速率、抗干扰性、保密性等方面表现更为优异,且无需申请频段许可,终端设备体积小、重量轻,被称为有望替代射频通信的下一代深空通信技术,得到了各航天大国的青睐。由于具备单光子探测能力且便于集成,自由运转盖革雪崩光电二极管(Geiger-mode Avalanche Photon Diode,Gm-
随着机器视觉的发展,针对红外图像目标检测与识别技术的需求也在不断增长。红外面阵扫描系统具有探测能力强、扫描效率高等特点,基于该类设备的算法研究成为了红外机器视觉领域的研究热点之一。通常情况下,红外面阵扫描设备为方便人员监控与算法处理,首先需要在水平方向上拼接输出图像,但在工作过程中受转速不稳、平台震动的影响,难以生成稳定的全景图像;其次面阵扫描输出速率高,数据量大,对算法运行速度有较高要求;此外受
单光子激光雷达是一种先进的主动光电探测技术,能够充分利用探测器接收到的每一个光子信号,具有探测效率高、距离远、微弱信号探测能力强等优点。目标信号提取算法作为激光雷达的数据处理技术,可以获取目标距离、速度等有效信息,但现有的信号提取算法主要针对有准确轨道预报的目标,对于缺乏目标距离、速度及噪声等先验信息的未知场景不完全适用。因此,本文基于单光子激光雷达测距系统,以无先验信息的高速运动目标为主要研究对
单光子探测技术可以探测极其微弱的光信号,在物理学、化学、生物医学、天文学和信息科学等自然学科领域的超灵敏弱光检测中发挥着重要的作用。雪崩光电二极管是一种基于雪崩倍增效应的光电探测器件,由于其具备单光子探测能力、便于集成、对制冷系统要求低,而成为实现单光子探测器的理想选择之一。由于InGaAs盖革雪崩光电二极管(Geiger mode Avalanche Photon Diode,GmAPD)探测器
蓝宝石衬底质地坚硬、不易减薄且表面翘曲严重,碳化硅衬底尺寸小、价格昂贵,相较之下,硅衬底价格低廉、晶圆尺寸大、晶体质量高、表面平整度好、工艺成熟,在制备低成本、大面阵、高均匀性Al(In)GaN紫外探测器领域有巨大的应用价值。但硅衬底Al(In)GaN的晶格失配度和热失配度较大,外延质量较差。随着网格化选区生长、中间层、缓冲层、超晶格等技术的进步,硅衬底Al(In)GaN的外延质量、厚度、面积不断
激光雷达、深空通信、天文观测、量子信息技术等国家重大战略对红外光子探测器件的灵敏度有越来越高的要求,传统的半导体探测器件在中波红外的信噪比难以满足需求。在中波红外的4.3μm大气窗口处,也是二氧化碳的特征吸收峰,可用于检测二氧化碳,支持国家的碳中和工作。本论文将聚焦于降低探测器的噪声,提升信噪比,寻找理想光电耦合情况下提高给定脉冲光子数量的少光子探测器的探测性能,主要内容如下:1.我们对半导体器件
GaN基材料具有直接带隙、禁带宽、光吸收系数大、抗辐射及耐高温等优良的物理和化学特性,非常适合制备高性能的光电探测器或者电子器件。其中Al GaN材料随着Al组分的变化,其禁带宽度可以从3.4 e V变化到6.2 e V,恰好覆盖200 nm-400 nm范围的紫外波段,因此在紫外探测领域(尤其是日盲紫外区域)有很大的应用价值。随着航天、军事以及科研对于研究紫外焦平面探测器的需求,相关的研究报道层
海表温度作为最重要的海洋研究要素之一,对于气候水文观测、生态资源探测和自然灾害监测等有着重要的意义。我国为建设海洋强国,加快海洋资源的开发和利用,先后发射了四颗太阳同步轨道海洋一号系列水色水温遥感卫星。其中海洋一号B星(HY-1B)于2007年发射升空,2015年才停止工作,其上搭载的主载荷海洋水色水温扫描仪(COCTS)在轨工作9年积累了丰富的海洋遥感数据,对于我国海域的科学研究和沿岸建设,提供