论文部分内容阅读
本论文以国内某型号内燃机车司机室降噪工程技术难题为出发点,紧紧围绕振动噪声的源辨识这一科学问题展开研究。为了实现闭环的系统工程分析与高性能数字化综合分析,一个完善信号处理技术与有限元模型是其必不可少的、重要的环节。为此笔者经过六年的努力,开发了一套基于VMD的源辨识信号处理软件,对所研究内燃机车建立了结构、声腔和声振耦合有限元模型。研究过程中,解决了VMD参数选择问题、真实BIMF分量筛选问题、时频分辨率发散问题以及盲源分析中的欠定盲源分离问题。对所研究车辆的型式试验中振动噪声数据,应用VMD方法对车辆结构模态、子系统振动特性、部件振动特性、动力室噪声特性以及司机室噪声源辨识进行深入细致的研究。对科学问题深入研究,最终攻克某型号内燃机车司机室降噪技术难题。主要研究工作如下:1.针对VMD参数设置的问题,研究了罚参数α与层数参量K对信号分解的影响。研究表明,当层数参量K合适的情况下,罚参量α是一个与信号能量相关的值,为了获得VMD最优分解结果,本文提出一种对罚参量α选择的新方法,并给出了公式。当罚参量α确定时,随着层数参量K的变化会导致伪分量,研究表明伪分量的拟合频率会随着层数参量K的变化而变化,但真实分量则与层数参量K的变换无关,因此提出一种基于BIMF特性的VMD参数选择方法,该方法通过观察层数参量K对BIMF分量信号拟合频率与拟合阻尼变化,根据稳态结果选择信号的真分量并剔除伪分量。2.研究了基于VMD稳态参数下的线性与非稳态模态分析方法,通过仿真结果表明,该方法不仅可以有效识别线性模态试验中的模态参数,还可以有效识别非稳态模态试验中的时频特性。3.为了合理分析试验结果,完善了测试车辆结构模态有限元分析、司机室声腔模态有限元分析及声振耦合模态有限元分析,为噪声源辨识与控制建立理论基础。4.详细分析了内燃机车振动源、受迫振动及噪声的时频特性。验证本文提出的VMD稳态参数时频分析法较传统的CWT时频分析法和HHT法具有更好的分辨率,可以更有效的揭示工程应用中噪声与振动信号的时频特性。5.针对盲信号分离中测试信号不足的欠定问题,以及VMD参数选择无法实现自适应的问题,本文提出了一种由数据驱动的VMD参数选择方法QVMD,并在QVMD的基础上,提出采用Fast ICA法和PCA的欠定去噪源分离新方法。该方法不仅能处理平稳与非平稳信号,而且可以通过较少的观测信号实现对较多源信号的溯源分离处理。研究表明,所分析的内燃机车主要噪声源为动力室混响、辅助齿轮箱振动、柴油机振动和车外空气路径噪声。6.结合本文分析方法的结论与有限元仿真,对内燃机车进行了降噪控制设计,通过现场试验研究证明了,识别的噪声源特征准确,实现司机室噪声控制,司机室降噪量达到8.3d BA。该方法有效地解决了主机厂某内燃机车司机室噪声偏大的工程问题。