金纳米粒子的合成、自组装及其SERS应用研究

来源 :燕山大学 | 被引量 : 0次 | 上传用户:zhihong0223
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
精准的合成方法决定着金纳米粒子的纯度,高纯度的纳米材料具有高效、稳定的性能。但相较于可以达到95%初始产率的金纳米球(Au NPs)、金纳米棒(Au NRs)等粒子,有着独特各向异性几何结构与优异等离子体性能的金纳米三角片(Au NTs)的产率却普遍低于50%,严重阻碍其在生物医疗、光谱分析等领域的进一步发展与应用。同时,特殊的手性结构粒子在作为传感平台进行手性分子检测与区分,调节生物机能反应等领域也有着巨大的应用潜力。基于以上问题与发展前景,本论文做了以下方面的研究。(1)金纳米三角片的合成,组装及应用:基于种子介导法,通过精确调控纳米粒子生长的各个条件(表面活性剂、碘化钾、温度等),最终在10 min内达到70%左右的产率。同时分析了粒子的生长方式,以及粒子在溶液中的受力情况,通过添加高浓度十六烷基三甲基氯化铵(CTAC)与氯化钠(Na Cl)进行纯化,最终达到98%左右的产率。高纯度的产物经巯基-聚苯乙烯(PS-SH)修饰,在液-液界面组装为有序二维膜。对其组装模式进行了时域有限差分(FDTD)电磁场模拟,确定了粒子之间的热点耦合在顶点之间,并通过表面增强拉曼散射(SERS)检测亚甲基蓝(MB)的信号强度,证明有序二维膜的SERS增强效果相比无序二维膜有两倍多的提升。(2)手性传感平台的构建:以金纳米立方体为种子,在不同手性分子的引导下,制备为两种不同的手性结构粒子,并分析了生长过程中不同条件对手性粒子结构不对称度(g-factor)的影响。将手性粒子用PS-SH进行修饰,在液-液界面自组装为有序二维膜并作为SERS基底。利用手性基底与手性分子之间的选择性共振耦合效应,产生选择性的共振增强进行手性分子的检测。相比于无手性结构的基底,手性基底对于手性分子的SERS检测效果有着明显的提升。
其他文献
高强高韧钛合金作为性能优异的结构材料在航空航天等领域具有不可或缺的地位,是钛合金发展最为重要的方向之一。系统性的研究以及基础研究的缺乏,在一定程度上限制了先进钛合金的发展与工程应用。TC21钛合金作为我国自主研发的高强高韧损伤容限型钛合金,热加工工艺参数决定了其显微组织以及最终的综合性能。组织遗传现象普遍存在于TC21钛合金的热加工过程中,结合实际生产工艺流程,探索热加工工艺参数对TC21钛合金构
学位
农业生产活动中畜禽粪便等有机肥频繁和大量施用导致重金属、抗生素和抗生素抗性基因(Antibiotic resistance gene,ARGs)的污染问题日益严重。腐殖酸(HA)是土壤中常见的有机类物质,能改善土壤环境,激活微生物活性以及促进植物生长,同时也是常用的土壤修复材料。因此,本研究选取镉(Cd)、磺胺嘧啶(SD)作为重金属和抗生素代表,选取HA作为添加剂,研究Cd和SD单一及复合污染以及
学位
黄河三角洲是典型的滨海盐碱区,石油污染严重。生物刺激、生物强化-刺激联合修复被广泛应用于国内外石油污染场地修复的研究中,目前主要集中于生物修复的影响因素及碳氢化合物的降解效率相关研究,对于实际场地修复过程中土壤微生物群落结构及功能随修复进程的变化研究较少。本文利用生物刺激(BS)、生物强化-刺激联合(BA)修复方式进行了黄河三角洲盐碱石油污染土壤的野外场地修复试验,试验周期为3个月。本研究的目的主
学位
马兜铃属植物中广泛存在着马兜铃酸(AAs),一种具有强致癌性的硝基菲羧酸,它会导致人类患慢性肾病,每年夺走数百万人生命。研究发现马兜铃属植物可以经过枯萎和腐烂,AAs进入土壤,造成了土壤污染。并且发现土壤中的马兜铃酸可通过植物的吸收作用在农作物中累积富集,从而危害人类健康。但目前对于土壤及生态系统中马兜铃酸污染状况,尤其是农作物中的迁移、转化,尚缺乏系统研究,使人们面临严重的饮食健康威胁。因此,本
学位
机械工业在我国国民经济中占据重要地位,机械装备制造水平代表着一个国家的科技发展水平。随着社会的快速发展,机械装备的可靠性指标也有了更高的要求,精准的可靠性分析方法是提高机械装备可靠性的关键。典型寿命分布往往不能很好地拟合复杂系统的可靠性变化,为此,将PH分布引入到T-S动态故障树模型中,提出PH分布下T-S动态故障树分析方法。进一步,针对可修系统提出PH分布可修系统T-S动态故障树分析方法,并基于
学位
钢铁材料制备过程中涉及到钢的冷却以及轧制或锻压前的再加热过程,在这些过程中温度的变化会导致钢中非金属夹杂物与钢基体之间的化学反应处于非平衡态。固体钢中稀土夹杂物与钢基体之间的反应,会造成钢中稀土夹杂物的种类、成分等性质的变化,从而对钢的性能造成影响。本研究通过控制钢中的稀土铈含量,在实验室通过高温硅钼电阻炉制备了含不同种类的含铈夹杂物的钢样。然后将钢样分别在不同温度下保温相同时间或者在相同温度下保
学位
高熵陶瓷源自于高熵合金,随后又扩展出多种类型,高熵氧化物陶瓷则是其中的一种。高熵氧化物陶瓷又称为熵稳定的氧化物,是一种新型的功能材料,自提出以来就引起了广泛的关注。最初的(Mg Co Ni Cu Zn)O系高熵氧化物陶瓷是单相岩盐结构,随后出现了萤石结构、钙钛矿结构和尖晶石结构的高熵氧化物陶瓷。不同的结构会给这类高熵氧化物陶瓷材料带来不同的性能,从而拓宽关于它的研究思路和应用前景。本文选择MgO、
学位
聚离子液体(PILs)兼具聚合物和离子液体的双重特性,其高电荷密度的阴/阳离子对在电场下可诱导出强偶极矩,被认为是一种优异的无水型电流变材料。然而含有机反离子的PILs的玻璃化转变温度(Tg)较低,当温度达到Tg时,其离子电导率迅速增加并产生漏电流,从而限制了PILs电流变液的使用。因此,解决PILs电流变液在高温下的离子泄漏是目前该材料研究的主要问题之一。本文以疏水型PILs微球为核,通过原位溶
学位
随着科技的发展和社会的进步,氯酚类污染物逐渐进入到人们的生活中,由于其具有三致作用、持久性强和生物蓄积性等特点,因此对氯酚类污染物的去除刻不容缓。因纳米零价铁具有比表面积大、颗粒粒径小、反应速率快等特点,近年来,在处理有机污染物方面被广泛关注,但因为其又有易团聚、易形成氧化层等问题,使得在实际应用方面具有不容忽视的局限性。同时,高级氧化技术因为可以产生具有强氧化能力的自由基而被人们所熟知,AOPs
学位
膜分离技术因其操作简单、效果显著且成本较低而广泛应用于含油废水等污水处理领域。聚偏氟乙烯(PVDF)微孔膜由于具备合适的孔径、较高的孔隙率、优异的化学稳定性以及较强的机械性能,一直以来被认为是废水处理领域较为有效的材料之一。但是PVDF膜片本身的强疏水性,使得其在使用过程中会受到严重的污染,极大的限制了其在污水处理领域的应用。因此,对PVDF膜片进行亲水化改性,提高其抗油污能力显得至关重要。本文分
学位