论文部分内容阅读
在骨科医学诊疗中,个性化精准诊疗的需求日益旺盛。3D打印技术和现代医学影像技术的发展,为此提供了一个绝佳的解决方案。本论文针对激光3D打印(SLM)个性化多孔钽的设计制造需求,深入研究了SLM打印金属钽的优化工艺,以此为基础应用Euler-Bernoulli梁理论研究建立了多孔体相对密度与弹性模量之间理论的函数关系,并用有限元法在ABAQUS软件中进行了模拟修正。研究了基于理论等刚度条件下,变截面梁模型与对应等截面梁模型几何参数的换算关系。选取典型的孔结构设计参数,打印系列多孔结构试样,并检测了其力学属性参数。对比了理论数学模型,研究了样件相对密度与弹性模量之间的内在关系。最后针对复杂的髋关节翻修手术病例,根据人体生物力学、临床手术要求,用有限元法优化植入假体的设计结构。在确保假体结构安全的前提下优化轻量化结构,探索性提出了变密度的假体设计方法,为多孔钽假体临床植入应用奠定了研究基础。本论文主要研究工作及成果是:(1)针对具有耐高温(熔点为2996℃)、高密度(16.65g/cm~3)的金属钽粉,对SLM工艺中激光功率、扫描速度、铺粉层厚、扫描间距等4个关键工艺参数进行了系统的研究优化,探究了激光功率密度与成形试样质量的内在关系。研究表明SLM成形钽粉材料过程中,实际作用激光功率小于300w时,可有效降低样件组织内部裂纹的产生概率。试样致密度随着激光能量密度的升高而增高,但过高的激光能量密度也会引起打印缺陷。激光功率密度在800J/mm~3左右,样件的微观缺陷较少,SLM打印致密钽样件的相对密度可达到98%,能够达到工业化制造金属钽的静力学性能,可以打印设计直径是0.25mm以上的圆柱结构。(2)本论文研究了变截面梁菱形十二面体的几何特性,确定其主要结构设计参数为长径比(β),孔径(d)以及变径比(τ)。为了保证设计的多孔结构的几何特性,在菱形十二面体的节点处,融合圆柱最小高(g)与小梁名义直径D_1的比值α应为?2?2。当β趋近于?2时,多孔体相对密度的理论极限值约为0.5984。根据Euler-Bernoulli梁理论,研究得出了变截面梁菱形十二面体单胞结构在相互垂直的两个方向弹性模量的函数模型,理论弹性模量与孔结构的β和τ直接相关。用有限元法在ABAQUS软件中对函数模型进行了模拟修正,得出单胞变截面梁菱形十二面体孔结构理论等效弹性模量的修正系数为0.76,而多胞结构的弹性模量减小并不明显。当基体材料属性(钽,185.7Gpa)和变径比τ确定时,理论上多孔体相对密度与等效弹性模量之间符合指数函数关系。(3)应用Euler梁理论推导了圆形等截面菱形十二面体的理论力学模型。研究表明等截面梁模型弹性模量也与孔结构的长径比直接相关。基于理论计算,得出了等刚度条件下变截面梁模型与等截面梁模型几何参数的换算关系。选取典型孔结构设计参数,SLM打印成形了系列多孔钽试样,其实测弹性模量在1.82Gpa-5.15Gpa之间,接近人骨的力学性能。发现由于SLM工艺局限,多孔样件表面形貌粗糙,样件与理论设计模型偏差较大。样件弹性模量的实测值随样件的相对密度增大而增大,且呈线性增长趋势。(4)针对复杂的髋关节翻修手术病例,运用本文研究的多孔体力学属性成果,根据人体生物力学的要求,找到了优化的假体设计方案。按照假体应力分布,提出了“框架式”的变密度多孔结构假体设计方案。用有限元法对等效变密度模型受载进行了仿真模拟。在确保结构安全性的前提下,设计的变密度假体理论上减少质量25%,为多孔钽假体临床植入应用奠定了研究基础。