基于脉搏波的人体健康监护系统研究

来源 :哈尔滨理工大学 | 被引量 : 0次 | 上传用户:xi00xi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来随着生活质量的提高,以及缺乏锻炼,使得我国急性病的发病率逐年增加,由急性病导致的死亡率也在增加,尤其是由于猝死导致死亡的人口正在急剧上升。在我国由于医疗资源分布不均匀,家庭医疗的发展还不成熟,所以对家庭医疗的研究已经成为重要的研究方向之一。目前穿戴式健康监护设备多种多样,有的检测参数单一,有的不方便携带,这些都不能有效的对人体健康进行连续监护。鉴于这种情况本文设计了一种穿戴式健康监护系统。首先,通过健康监护设备采集人体的脉搏波,通过监护设备中的蓝牙功能将采集的脉搏波传输到手机APP,手机APP可以实时显示脉搏波波形也可以将这些数据保存下来。其次,通过WIFI将手机APP中保存的数据传输到PC端,大量的数据处理与分析都在PC端进行,主要对脉搏波波形进行特征点提取以及特征参数的计算,在不同的运动状态下匹配个人特有的标定量,通过和标定量的比较来判断人体的某些生理病理变化。当人体出现不良状况时,系统会给私人医生以及用户的联系人发预警信息。最后,私人医生可以通过手机接收PC端传出的和病人相关的健康信息。采集到的数据可以保存下来,通过对一段时间内数据的分析,以及一些特征参数的变化趋势,来提前做出准备,预防急性病的发生。本监护系统硬件部分MCU采用STM32F103C8T6开发板。采用光电脉搏波传感器来采集脉搏波信号,用CC2540来传输数据,本健康监护系统的设计遵循体积小、重量轻、功耗低、成本低、实时性强、抗干扰能力强的原则,符合穿戴式设备的设计特点,方便使用者在日常生活中以及工作中佩戴方便。将采集到的数据先通过蓝牙传输到手机APP,最终通过手机APP传输到PC系统端做数据的处理分析。本检测系统软件部分主要采用Java语言。手机APP是基于Android手机开发,PC端是基于SSM(Spring、Sping MVC、Mybatis)框架实现了部分的功能,采用Oracle数据库进行数据库的设计以及数据的保存。
其他文献
电力行业中,传统的用电管理方法及对返厂维修的电表信息采集都是采用人工抄表的形式,工作繁琐,效率低下,智能抄表系统的出现迎合了时代的需要。本文旨在设计一套集图像采集、
在噪声环境下,语音处理系统的性能会大大降低,严重影响语音处理质量。因此,语音增强作为消除干扰噪声的语音前端处理,是非常有必要的。本文主要研究了Fan-chirp变换域的语音增强
SAR目标自动识别(Automatic Target Recognition,ATR)是SAR图像解译和分析的重要环节。由于SAR图像不同于其它成像图像,它掺杂着大量的相干斑噪声、几何畸变,易受方位角影响,
近年来,我国交通事业飞速发展,桥梁更是处于跨越式的发展阶段,但是缺乏桥梁的日常维护。桥梁健康检测系统集成了多项计算机技术,大大增强了人机交互的直观性,弥补了手工作业
信号的同步参数估计问题,在移动通信领域有着广泛的应用,同时在卫星通信和测控技术等方面也有着极为重要的价值。参数估计的准确度直接影响到信号检测和分离的性能。本文主要针
图像的超分辨率重建算法突破了现有的图像成像器件固有的限制,实现了高分辨率技术更好的应用。高分辨率图像在医疗和卫星领域有着非常重要的应用,因为低分辨率图像会给诊断和
由于环境变化、降采样等原因导致采集到的监控视频图像质量较低,给事物细节特征的分辨带来不便。然而,通过硬件方法提高图像质量不仅成本高而且周期较长,所以采用超分辨率的
随着互联网的普及,各种各样的基于互联网的应用层出不穷,这些新型的应用对互联网提出了不同的需求,使得现有的互联网架构面临着很大的挑战,互联网发展呈现出僵化现象。在这种
在新一代无线移动通信系统中,相干检测、数据的解调和译码、信道质量的测量以及用户定位等过程,都需要通过信道估计来获得信道状态信息。因此,信道估计是蜂窝无线通信系统如L
近年来随着移动通信技术的迅猛发展,越来越多的无线终端设备接入到通信网络,造成频谱资源严重匮乏。与此同时,现有固定频谱分配方式的授权频段内的频谱大多处于空闲状态,频谱利用