论文部分内容阅读
唐古特白刺(Nitraria tangutorum)是北方内陆盐碱地区荒漠植被的优势种或建群种之一,为我国特有植物种,具有沙生植物和盐生植物的多重特性。本研究以唐古特白刺为对象,通过根系分布、根际土壤水分、幼苗盐胁迫下生理指标变化、盐离子吸收运输及分布、光响应及叶绿素荧光变化、光合日变化等的观测,对其资源特征及耐盐生理特性进行了研究,以期对其资源利用及盐碱干旱环境生态保护提供理论依据,取得如下主要研究结果:1.根际土壤水分变化规律明显,0~40cm土层含水量变幅较大,40~80cm土层含水量最高,80cm以下随土层加深而递减,160~300cm土层含水量没有明显变化。平均根长100cm,根幅300cm。主根较粗,入土浅,根长为株丛高的1.32倍,侧根发达,扩展范围较广,根幅为冠幅的3.23倍,地上生物量为根系生物量的1.46倍;有效根系主要分布于0~40cm土层,为吸收和利用水分的重要区域,在0~20cm、20~40cm土层中,有效根重分别占总有效根重的58.69%、22.96%,有效根长分别占总有效根长的59.65%、23.20%。根系的水平走向和浅层大范围分布,有利于及时有效吸收利用因降水而补充的地表水分,是其在干旱荒漠地区大面积分布的重要生存策略之一。2.NaCl胁迫10d、20d、30d后,幼苗叶片抗氧化物酶活性均随NaCl浓度的增大呈相似的变化规律,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)活性均在低浓度(25~100mmol·L-1)胁迫时上升,高浓度(200~400mmol·L-1)盐胁迫时下降;丙二醛(MDA)、脯氨酸(Pro)含量均随NaCl浓度增大持续上升,在相同NaCl浓度下,胁迫10d时上升幅度较大,胁迫20d、30d时上升幅度较小;可溶性蛋白(SP)含量随NaCl浓度增大呈现整体下降趋势;可溶性糖(SS)在低NaCl浓度时上升,高NaCl浓度时下降。表明随NaCl浓度增大,幼苗的膜脂过氧化程度加大,保护酶在低NaCl浓度下对清除活性氧起到主要作用,并且Pro是维持幼苗渗透压平衡的主要物质,而SS、SP对渗透压平衡具有辅助调节作用。3.根系对盐分离子的吸收比以K+最大,其次为Cl-、Na+;运输比以Ca2+最大,其次为Cl-、Na+。由于土壤介质Cl-、Na+的基数远大于其他离子,所以Cl-、Na+的吸收和运输总量最大,其后依次为K+、Ca2+、Mg2+。在NaCl胁迫下,以叶片优先吸收并积累大量盐分离子为适应特征,茎叶和根系中Cl-、Na+及总离子含量随NaCl浓度的增大而上升。叶片对Cl-、Na+和总无机离子的积累量高于茎和根部,叶片和茎部能够大量积累盐分离子,维持组织细胞的高渗透压和原生质胶体的高亲水性,增大地上部和根部的渗透势差,促进水分向地上部运输。4.NaCl胁迫下,幼苗的净光合速率(Pn)和蒸腾速率(Tr)变化趋势一致,其顺序为:25>CK>50>100>200>400mmol·L-1;水分利用效率(WUE)在200、400mmol·L-1NaCl浓度下显著高于CK和其他处理。随NaCl浓度增大,幼苗的表观量子效率(a)、暗呼吸速率(Rd)、最大光合速率(Pnmax)、光饱和点(LSP)和光补偿点(LCP)均呈下降趋势,在25mmol·L-1NaCl浓度下其Pnmax、LSP、LCP显著高于其它处理。随着NaCl浓度的增大,唐古特白刺幼苗对弱光的利用能力增强,对强光的利用能力下降,25mmol·L-1NaCl浓度下光合同化潜力最大,400mmol·L-1NaCl浓度下光合同化潜力最小。随NaCl浓度增大,幼苗的初始荧光(Fo)呈增大趋势,最大荧光(Fm)、PSⅡ原初光能转化效率(Fv/Fm)、PSⅡ潜在光化学效率(Fv/Fo)、光化学淬灭系数(qP)、非光化学淬灭系数(NPQ)、PSⅡ实际光合效率(ФPSⅡ)均呈下降趋势。说明NaCl胁迫下幼苗的PSⅡ光反应中心受到的破坏程度随NaCl浓度增大而加重,这也是其Pn下降的主要原因。5.幼苗Pn日变化呈现单峰趋势,峰值出现在上午10:00,之后随光合有效幅射(PAR)的增大而持续下降,无光合“午休”现象;Tr在8:00~10:00随PAR的增加呈现较大幅度上升,10:00-16:00有相对平稳的小幅升降变化,16:00开始下降;WUE的日变化整体表现为8:00-14:00快速下降,14:00以后稳定或小有上升;气孔限制值(Ls)在8:00-14:00整体表现为平稳上升趋势,14:00以后下降。多元回归显示,PAR偏回归系数显著大于其他环境因子,说明PAR与Pn的相关性最大。通径分析结果显示,除800mmol·L-1外,各环境因子与Pn的通径系数趋势为:PAR>大气CO2浓度(Ca)>空气相对湿度(RH)>大气温度(Ta),表明PAR对Pn的贡献最大。不同NaCl浓度下PAR的通径系数随NaCl浓度的上升先升高后降低,环境因子对Pn的效应在100mmol·L-1NaCl浓度下最显著,此浓度下PAR和Ca的利用效率最高,在800mmol·L-1NaCl浓度下,PAR的利用效率最低。