论文部分内容阅读
保持电力系统运行的暂态稳定性是该领域科研和工程人员面临的基本任务。电力系统暂态失稳的根本原因是系统内能量平衡遭到破坏,能够直接快速消除系统内功率不平衡的切机切负荷和可控制动电阻(TCBR-Thyristor Controlled Braking Resistor)等直接能量控制措施(DECMs-Directed Energy Controllable Measures)是维持和提高电力系统暂态稳定性的有效手段。但由于问题的复杂性,长期以来针对DECMs的暂态稳定控制设计在理论研究和工程应用始终面临巨大挑战。研究和发展以系统能量为核心的理论和方法用于指导DECMs控制设计有效地提高和改善系统暂态稳定性,具有重要的理论意义和实际工程意义。本论文将Hamiltonian系统理论新成果引入到电力系统暂态稳定控制研究中,并发展了针对DECMs建模及能量整形控制设计的系统化方法,主要研究内容包括:在建模领域,论文提出了DECMs功率注入模型,在此基础上研究了受控电力系统Hamiltonian实现,构造的电力系统Hamiltonian模型清晰描述了系统能量特性,为基于能量的稳定分析和控制奠定了基础。在暂态稳定控制设计领域,将Hamiltonian系统能量整形概念和方法加以发展并应用于DECMs控制设计,设计内容包括:针对切机切负荷开环离散紧急控制设计,应用能量整形Casimir函数方法首次构造了考虑定常紧急控制的受控Hamiltonian函数作为受控系统稳定性分析的Lyapunov函数,实现了稳定分析与紧急控制设计的综合;并在此基础上提出了受控判稳准则及控制拟灵敏度和受控能量裕度等一系列概念和方法,结合时域仿真开发了具有较高效率的紧急控制策略搜索算法。针对TCBR闭环连续控制问题,应用能量整形IDA-PBC方法提出了单机和多机系统TCBR镇定控制设计系统化方法,通过仿真研究验证了论文所提出的控制设计策略和方法的有效性,本文工作为Hamiltonian系统能量整形理论及方法应用于设计电力系统暂态稳定控制器进行了有益的探索。