论文部分内容阅读
据2018年WHO发布的《世界疟疾报告》估计,2017年全世界共发生2.19亿例疟疾,全球有43.5万人死于疟疾,而2016年全球共有2.16亿疟疾病例,约44.5万人死于疟疾,消除疟疾仍然是一个严峻挑战。目前发现有五种疟原虫会使人类感染疟疾,包括恶性疟原虫(Plasmodium falciparum)、三日疟原虫(Plasmodium malariae)、卵形疟原虫(Plasmodiumovale)、间日疟原虫(Plasmodium vivax)及诺氏疟原虫(Plasmodium knowlesi)。其中恶性疟原虫引发的疟疾危害最大,死亡率最高。据2018年《世界疟疾报告》,恶性疟原虫是撒哈拉以南非洲最流行的疟疾寄生虫,占2017年估计疟疾病例总数的92%。以青蒿素为基础的联合疗法是疟疾治疗的主要方法。青蒿素及其衍生物在疟疾治疗上挽救了全球数百万人的生命,但是其抗疟机制仍有待于进一步阐明。对青蒿素抗疟机制的研究不仅有助于青蒿素及其衍生物的合理利用,也有利于基于机制协同的联合应用,降低青蒿素类化合物的耐药问题,同时也会促进类似机制抗疟新药的筛选和研发。众所周知,青蒿素类化合物的激活主要依赖于血红素或者亚铁,产生活性氧及其他自由基。近几年,在肿瘤学研究中发现,青蒿素及其衍生物能诱导肿瘤细胞铁死亡(ferroptosis),青蒿素及其衍生物是铁死亡的诱导剂;但是,其抗疟机制中是否有铁死亡的参与,尚未见报导。铁死亡是近年新发现的一种调节性细胞死亡模式,在形态学、基因学、生物化学特征方面与传统凋亡、坏死、自噬等死亡模式存在显著差异,本质表现为Fe2+依赖的脂质过氧化物超限蓄积导致的细胞质膜损伤。由于疟原虫与肿瘤细胞等在生物学上明显不同,铁死亡是否为恶性疟原虫的一种死亡方式,青蒿素类药物是否诱导恶性疟原虫铁死亡,哪些环节是主要靶点,均值得论证和探讨。目的研究铁死亡是否为恶性疟原虫死亡的一种方式,铁死亡是否是双氢青蒿素抗疟机制中的一个重要通路,并探索其深层机制。方法通过恶性疟原虫体外抑制实验,研究铁死亡诱导剂(erastin(ERA)、RSL3、索拉菲尼(SOR))和抑制剂(liproxstatin-1,去铁胺(DFO))对恶性疟原虫增殖的影响,双氢青蒿素(dihydroartemisinin,DHA)与铁死亡诱导剂和抑制剂联用对恶性疟原虫增殖的影响,其中重点考察了双氢青蒿素与铁死亡抑制剂(liproxstatin-1,Lip-1)联用对恶性疟原虫增殖的影响。用流式细胞术检测铁死亡两个关键指标即细胞内动态铁池和膜脂质过氧化物,考察双氢青蒿素、铁死亡诱导剂作用于恶性疟原虫后,对细胞内动态铁池和膜脂质过氧化物的影响,以及双氢青蒿素与铁死亡抑制剂(liproxstatin-1,去铁胺)共同作用于恶性疟原虫后,对细胞内动态铁池和膜脂质过氧化物的影响。由于铁死亡最终导致Fe2+依赖的膜脂质过氧化物的增多,涉及到两个方面:一是亚铁浓度升高的原因,二是膜脂质过氧化。用脂质组学技术,分析不同剂量的双氢青蒿素作用后质膜系统中脂质的变化,研究膜脂质过氧化物增多的分子水平的机制。用RT-PCR技术,分析不同剂量的双氢青蒿素作用于恶性疟原虫后,疟原虫铁硫簇蛋白和铁硫簇装配通路等相关基因的表达水平变化,研究亚铁水平升高的深层原因。结果1、铁死亡诱导剂可剂量依赖性地诱导恶性疟原虫死亡。通过恶性疟原虫体外抑制实验发现,DHA单独作用于恶性疟原虫72 h后,DHA能有效杀灭疟原虫,并随着剂量增加,抗疟效果增加,其IC50为4.37±0.82nM。铁死亡诱导剂ERA,RSL3,SOR单独作用于恶性疟原虫72 h后,均能显著杀灭恶性疟原虫,且与剂量正相关,其IC50分别为 6.40±0.67 μM,4.87±0.26 μ和 12.40±0.82 μM。2、铁死亡诱导剂与双氢青蒿素联合作用于恶性疟原虫后显示出协同或者相加的效果,上述发现为青蒿素类联合用药抗疟提供了一种新思路。从DHA/ERA间的剂量效应结果发现,在抗疟药效为40-90%时观察到DHA/ERA间的协同或者相加效应。从DHA/RSL3间的剂量效应结果发现,DHA与RSL3的联用后在50-90%之间显示相加或者协同性。从DHA/SOR间的剂量效应结果发现,DHA与SOR的组合在30-90%时显示相加或协同的抗疟作用。3、铁死亡抑制剂可降低双氢青蒿素的抗疟效果。DFO在一定剂量水平下能降低DHA抗疟作用,在10-90%的抗疟效果下观察到DHA/DFO的拮抗作用。与仅使用DHA或DFO处理相比,DHA/DFO的组合处理使DHA的抗疟作用降低,尤其是在低剂量的时候拮抗效果明显。Lip-1在所有剂量水平下均降低DHA的抗疟作用,DHA与Lip-1的组合在10-90%显示拮抗效果。虽然单用Lip-1,在超大剂量时对恶性疟原虫有损害(可能是非特异性的毒性)作用,但在无毒剂量下与双氢青蒿素联用均可阻断和拮抗其抗疟作用。用DHA(4.4 nM)预处理恶性疟原虫1小时或2小时,无毒剂量下的Lip-1仍然可以大部分阻断DHA的抗疟作用。DHA(20、40nM)与不同浓度的无毒剂量的Lip-1共同作用,发现Lip-1可以在高浓度的DHA中以不同浓度显著降低其对恶性疟原虫体外生长的抑制作用;在与致死剂量的DHA(20、40nM)联合作用恶性疟原虫72小时后,一定剂量的Lip-1也可以挽救20-50%的疟原虫;Lip-1(2.35 μM)与不同浓度的DHA共同作用发现,随着DHA剂量增大,Lip-1对DHA抗疟效果的阻断作用越来越弱,但还是会有少量疟原虫存活。4、对于铁死亡2大核心指标,细胞内自由Fe2+和膜脂质过氧化物,DHA与铁死亡诱导剂具有相似的作用特征,即同时升高恶性疟原虫细胞内亚铁离子和膜脂质过氧化物水平;反之亦然,铁死亡抑制剂能降低DHA诱导的恶性疟原虫内亚铁离子和膜脂质过氧化物浓度的升高。与铁死亡诱导剂处理类似,DHA(40-200 nM)以浓度依赖性方式显着增强滋养体阶段恶性疟原虫细胞内亚铁和膜脂质过氧化物水平。ERA(3.5-3500μM),RSL3(50-250 μM)和SOR(6-600 μM)处理也有效增强恶性疟原虫细胞中的亚铁和膜脂质过氧化物水平。DHA杀疟具有与铁死亡诱导剂相似的特征,细胞内亚铁浓度的变化比膜脂质过氧化物的变化更严重。DHA同时增强疟原虫细胞中的亚铁和膜脂质过氧化物水平,而细胞内亚铁浓度的增加和膜脂质过氧化物的增加是铁死亡的主要特征。铁死亡抑制剂能降低DHA诱导的恶性疟原虫内亚铁和膜脂质过氧化物浓度的升高,所有剂量水平的DFO/Lip-1均能抑制DHA(20、40nM)诱导的亚铁和膜脂质过氧化物的升高。DFO以浓度依赖性方式显著降低疟原虫内非血红素亚铁,然后阻断膜脂质过氧化物的积累。Lip-1以浓度依赖性方式显著降低疟原虫内膜脂质过氧化物。因此,DFO和Lip-1均能降低DHA诱导的疟原虫内亚铁和膜脂质过氧化物的升高。5、脂质组学研究结果显示DHA确实能影响恶性疟原虫膜脂质代谢。将恶性疟原虫样本在高分辨质谱上分别做了正负离子两次扫描,负离子模式共计得到270种脂质分子,其中DHA作用后脂质变化1倍以上的脂质有8种,主要变化脂质包括磷脂酰胆碱(PC)、磷脂酰丝氨酸(PS)、磷脂酰乙醇胺(PE)、心磷脂(CL)。正离子模式共计得到191种脂质分子,其中DHA作用后脂质变化1倍以上的脂质有13种,主要变化脂质包括磷脂酰胆碱(PC)、鞘磷脂(SM)、甘油三酯(TG)。恶性疟原虫经DHA作用后,从正负离子模式中共检测到有21种脂质含量发生变化,占被检测脂质总数的4.5%左右,其中含量降低较明显的4种膜脂质,3种属磷脂酰胆碱,1种为磷脂酰丝氨酸类,前者常定位于膜双脂层的外层,后者常定位于内层,它们均是含有十八碳的二、三或四烯酸,是易受亚铁离子攻击的对象。6、DHA能显著影响恶性疟原虫一些铁硫簇蛋白的表达。以滋养体期恶性疟原虫为材料,通过RT-PCR实验检测了 45个恶性疟原虫3D7铁硫簇蛋白相关基因,其中铁硫簇蛋白基因31个,铁硫簇装配通路基因14个。DHA作用后表达变化基因44个,没有明显变化基因1个。表达变化基因中基因上调11个,下调22个,出现低剂量下调高剂量上调基因11个。DHA主要影响顶质体、线粒体铁硫簇装配通路及顶质体、线粒体、细胞核和细胞质、部位不定的铁硫簇蛋白。DHA对顶质体、线粒体、细胞核和细胞质铁硫簇蛋白有一定影响,与剂量有关,能下调顶质体脂肪酸合成通路LipA、LipB等基因,对线粒体IRP、ISD、ATF等基因有调控作用。DHA对细胞核和细胞质铁硫蛋白基因影响较大,对部位不确定的DRE2、DLS等基因有调控作用。因此,DHA可能通过调节铁硫簇蛋白及其装配通路,引起恶性疟原虫细胞内亚铁离子的升高,为进一步阐明青蒿素调节铁代谢的深层机制提供了前期基础。结论铁死亡是诱导恶性疟原虫死亡的一种重要方式,也是双氢青蒿素抗疟机制中的一个重要通路。