【摘 要】
:
氨对现代人类社会和自然界具有重要意义,由可再生资源在常温常压条件下,通过电化学方法而非使用高耗能的Haber-Bosch工艺合成氨,对于社会的可持续发展具有重要意义。因此,开发具有低过电势和高选择性的高效催化剂非常必要,但仍然面临艰巨的挑战。自然界中,常通过含有铁蛋白和铁钼蛋白的生物固氮酶进行氨的固定。鉴于此,我们通过模拟自然界固氮酶的配比制备电催化剂,进一步利用光辅助技术,有效提高了合成氨效率:
论文部分内容阅读
氨对现代人类社会和自然界具有重要意义,由可再生资源在常温常压条件下,通过电化学方法而非使用高耗能的Haber-Bosch工艺合成氨,对于社会的可持续发展具有重要意义。因此,开发具有低过电势和高选择性的高效催化剂非常必要,但仍然面临艰巨的挑战。自然界中,常通过含有铁蛋白和铁钼蛋白的生物固氮酶进行氨的固定。鉴于此,我们通过模拟自然界固氮酶的配比制备电催化剂,进一步利用光辅助技术,有效提高了合成氨效率:通过模拟Mo Fe固氮酶制备了一种负载MoO2和FeS2纳米颗粒的三维石墨烯气凝胶(MoO2/FeS2/GA),FeS2是一种析氢反应活性较差的材料,Mo(Ⅳ)可作为氮还原的活性中心,且以三维石墨烯气凝胶为底物,可以防止催化剂颗粒的聚集,保持其稳定性。我们在0.1 M HCl中探究了MoO2/FeS2/GA的电催化氮还原性能。在-0.25 V(相对于RHE)的工作电压下,可以实现37.44%的法拉第效率和40.18μg h-1mg-1cat.的产氨速率,相比GA,FeS2/GA和MoO2/GA和其他NRR电催化剂性,该电催化固氮效率都有突出优势,尤其是选择性方面有很大的提升。光辅助电化学氮还原可以将光催化和电化学过程的优点相结合,这种方法不仅可以在环境温度和大气压力等温和条件下产生氨,而且还可以由光提供动力,进一步提高固氮效率。因为FeS2是优良的半导体材料,具有最佳带隙(0.95 eV)、高吸收系数(α>10~5cm-1)以及储量大和生态友好等特性。受这些因素的启发,我们通过外加红外光源,在中性条件0.1 M Na2SO4中探究了MoO2/FeS2/GA的光电催化产生氨的性能。在-0.6 V(相对于RHE)的工作电压下,可以实现5%的法拉第效率和33.54μg h-1mg-1cat.的产氨速率,相较于其他中性环境下的测试实验,该催化剂具有较好的产氨速率。另外,研究表明该催化剂具有出色的电化学稳定性。
其他文献
传统的海水淡化技术在缓解日益严重的淡水短缺危机中起着核心作用。但是,它们受到高成本,高能耗和环境污染的阻碍。在过去几年的时间里,太阳能驱动的界面蒸发水(太阳能蒸发水)技术迅速发展。该技术使用太阳能加热水获取蒸汽,可以发展生态友好且具有成本效益的淡水生产,同时满足能源,环境的需求。这项技术引起了广泛的关注和研究,成为了一种低成本且有前途的海水淡化技术。聚苯胺作为一种原材料易得,合成工艺简单,化学及环
近年来随着我国国防工业不断发展,含能材料造成的环境污染问题也日益严重。传统含能材料在整个生命周期内都会产生大量有毒、组成复杂且不易分解的污染物,如果不能快速或正确处置这些污染物,都会对环境造成污染,甚至会损害人体健康。寻找高能量密度材料(HEDMs)不仅能够提高含能材料的性能,对于国防工业的发展具有重要的意义,而且高能量密度材料无论是在生产还是使用过程中都减少了污染物的产生,对于降低环境污染具有重
由于氢能具有燃烧产物清洁无污染及高能量密度等优势,被视为传统化石能源最理想的替代品之一。电解水制氢是实现大规模产氢的有效途径,它包括在阳极发生的析氧反应(OER)和在阴极发生的析氢反应(HER)两个半反应。目前贵金属氧化物Ir O2和Ru O2是性能最好的OER电催化剂,而铂(Pt)及其合金是HER电催化活性最高的催化剂。然而,由于贵金属在地球上储量稀少,使用成本相对较高,不太适合进行大规模工业化
蒸汽辅助重力泄油(SAGD)超稠油开采技术,是目前唯一比较成熟的商业化超稠油井开采技术。该技术目前主要分为预热阶段和生产阶段,在国内已经被大部分油田使用。新疆油田公司已经开始着手该技术的应用。截至2020年底,新疆油田风城油田作业区SAGD试验区分别建设了重32、重37、重1、重18、重45井区和重15火驱试验区,共计155组油井;实现年产400万吨,全生命周期SAGD井预计达到6000对。作业区
水性油墨废水的聚丙烯酸酯废弃物属于高碳物,含水率较低,其吸附性能在材料的应用制造与环境的污染治理方面具有潜在的应用价值。光催化技术在降解染料废水方面有着与传统治理水污染技术不可比拟的优点。本文首先将聚丙烯酸酯废弃乳液与锌离子络合,制备尿素分子吸附剂,可用于废液中尿素以分子的形式回收,并研究其对尿素的吸附性能;将聚丙烯酸酯废弃乳液-Zn(Ⅱ)-尿素作为前驱体,采用热缩合法制备出高效吸附性光催化剂g-
化学链燃烧技术是一种新型无焰燃烧技术,依靠载氧体在燃料反应器与空气反应器之间的还原–氧化反应,传递反应所需要的晶格氧与热量。性能优良的载氧体是保证化学链燃烧高效率、稳定运行的重要条件,本课题针对以往人工制备载氧体普遍成本高、易失活的问题,选用易获得、高活性的天然锰矿石作为载氧体,探究其在宁东煤化学链燃烧过程中的性能。同时,针对目前化学链燃烧过程中S元素的转化机理研究较少的现状,采用分子动力学模拟方
随着通信电子设备的普及发展以及移动通信技术的不断创新,人们的生产和生活迎来了前所未有便利。由此产生的电磁辐射不仅严重干扰电子设备的正常运行和人体健康,还大幅度限制了武器的使用寿命,威胁着军事安全。磁波吸收材料能够有效地衰减电磁辐射,因而受到了社会各界的广泛关注。二维过渡金属碳化物或氮化物(MXenes)是一种通过蚀刻MAX相中的金属插层而形成的片层状物质。MXene因其独特的结构、丰富的表面终端、
自从1880年压电性被报道以来,人们对压电材料的开发和力-电耦合效应进行了不断深入的研究。压电性是指晶体在外界应力作用下发生极化,在力的垂直方向两表面产生等比例电荷的现象,铁电性是指在没有施加外界应力作用时晶体内也存在自发极化的现象。压电体被广泛应用于驱动器和传感器等方面,同时压电性也被认为在应力发光材料中发挥重要作用。铁电体属于压电体的一种,在存储器和大规模集成电路元器件方面应用前景广阔。但是当
多色可调固态荧光材料自出现以来,因其“越聚集,越发光”的特性以及光电效率高,分子响应快,分子骨架柔性好等优点被广泛应用在有机光电子、细胞成像、化学检测、防伪、荧光传感器等领域。但是由于传统的发光基团分子骨架共轭性强,易导致荧光淬灭。此外,它们的制备过程复杂且繁琐、加工性差、生物毒性高等问题进一步影响了此类荧光材料在化学和生物医药领域的快速发展与广泛应用。随着对新型发光材料的化学结构(共轭结构、取代
随着生活水平的提升和观念的转变,人们对健康安全纺织品的要求日益增强。植物染料取自天然,产品生态安全,符合人们崇尚自然、绿色安全的要求,因此近年来植物染料生产、植物染色及其相关产品的工业化技术研发得到业界高度重视。但植物染料有别于合成染料,植物染料染色目前存在颜色均匀性差、色系单一等问题。因此为提高植物染产品的应用范围,需要研究植物染色纺测色和配色技术。本研究针对植物染色纺工业化生产过程中遇到的测配