【摘 要】
:
随着半导体工艺的进步,电路的供电电压不断降低,电压域模拟电路的设计与优化愈发困难,集成电路的“数字化”已经成为一种趋势。先进集成电路工艺在时间域量化的精度已经达到皮秒级,随着工艺的发展,时间域量化的优势将愈发明显。时间数字转换器(TDC)用于测时电路,可以将输入的时间域信号转换为数字信号,在激光测距、量子物理、分子影像等诸多领域都有着广泛的应用,高精度、大测量范围时间测量技术已经成为当前的研究热点
论文部分内容阅读
随着半导体工艺的进步,电路的供电电压不断降低,电压域模拟电路的设计与优化愈发困难,集成电路的“数字化”已经成为一种趋势。先进集成电路工艺在时间域量化的精度已经达到皮秒级,随着工艺的发展,时间域量化的优势将愈发明显。时间数字转换器(TDC)用于测时电路,可以将输入的时间域信号转换为数字信号,在激光测距、量子物理、分子影像等诸多领域都有着广泛的应用,高精度、大测量范围时间测量技术已经成为当前的研究热点。本文针对TDC在飞行时间测量(To F)等对分辨率与测量范围均有较高要求的应用领域,设计了兼顾分辨率与测量范围的TDC电路。该TDC能够在两种模式下工作:模式一需要外接高质量参考时钟,拥有更高的测量范围,能够克服工艺、电压、温度(PVT)对TDC实际测量的影响;模式二不需要外接参考时钟,拥有更高的分辨率。两种工作模式均可单独作为独立的TDC使用。本文的具体工作主要分为两个方面:在TDC设计方面:基于Cadence Spectre仿真平台与SMIC 55nm CMOS工艺,针对传统TDC分辨率与测量范围相互制约的问题,设计了一种基于延迟锁相环(DLL)的二级内插式TDC。该TDC第一级使用倍频延迟锁相环(MDLL)内插结构扩大测量范围。仿真验证结果表明,在参考时钟为10MHz,倍频系数为25倍的前提下,该TDC的分辨率为7.8ps,测量范围达到130us,单次插值内微分非线性(DNL)小于0.4LSB,积分非线性(INL)小于0.4LSB。进一步地,针对其需要外接高质量参考时钟的缺陷,设计了一种基于环形结构的两步式TDC。该TDC第一级使用差分环形结构以扩大测量范围。仿真验证结果表明,该TDC的分辨率为5.5ps,测量范围达到5.8us,微分非线性(DNL)小于0.5LSB,积分非线性(INL)小于1.3LSB。两种TDC的第二级均通过改变压控延迟单元输出端负载电容的数量,利用DLL结构精确控制压控延迟单元的延迟,以产生代表分辨率的延迟差,进而实现细量化,提升分辨率。TDC测试方面:给出了一种基于FPGA的TDC测试方法和流程,使用XILINX kintex-7 FPGA开发板,搭建TDC测试平台,对所参与的SMIC 0.18um CMOS工艺下流片的内插式TDC芯片完成精度测试。另外,针对所设计二级内插式TDC结构的特殊性,提出了一种改进的码密度测试算法,该算法能够提取内插式TDC中延迟单元的失配误差信息,针对此算法完成了MATLAB建模与仿真。
其他文献
近年来,太赫兹技术的高速发展离不开太赫兹功能器件的有力支撑。与此同时,太赫兹功能器件对太赫兹系统性能的提升起到极其关键的作用。然而,目前的太赫兹功能器件由于受到传统材料性能与结构的限制,其器件性能难以进一步提高。基于人工微结构的太赫兹功能器件为实现高性能的太赫兹器件提供了新的思路和途径,进而为太赫兹技术的广泛应用奠定基础。因此,本文提出并研究了基于人工微结构的太赫兹柔性线栅结构极化器、柔性花瓣型带
天线作为一种发射和接收电磁波的转换器,是无线电通讯系统中非常重要的组成部分。圆极化天线因抗雨雾干扰和多径效应效果显著,且具有旋向正交性、电离层穿透能力强、受地球两极磁场法拉第效应影响小等优点脱颖而出。其中,微带天线剖面低、尺寸小、易于实现多类极化等特性使之成为了设计圆极化天线的主要选择,但一般的圆极化微带天线工作带宽较窄。同时,宽带天线的出现则满足了无线电通讯对系统容量以及信息传输速率的要求。为了
随着5G通讯,天地一体化网络,高精度成像等领域的快速发展,电子系统对多波束、大带宽、低延时的要求越来越高,因此,有源相控阵技术成为研究热点之一,其应用也越来越广泛。本地振荡器和移相器作为有源相控阵系统中的关键元器件,对相控阵系统的性能有着重要影响,因此本文着重对本地振荡器和延迟线进行了研究,降低了本地振荡器的相位噪声,缩小了延迟线的电路面积,有效的降低了相控阵射频前端的体积,提升了射频前端的性能。
我国每年产生的动物粪便中约40%以上未得到充分利用,造成严重的资源浪费和环境污染。厌氧消化是一种经济高效的处理大量畜禽废弃物的方式,但存在有机物水解反应速率慢、产甲烷效率低等问题。因此,如何解决提高厌氧消化速率以及开发新型高效的厌氧消化工艺是目前发展的焦点。向厌氧消化体系中投加生物炭的方式是常用的工艺手段之一,但产甲烷效率仍有提升空间。本研究利用铁改性生物炭,开展了复合材料对牛粪厌氧消化产气性能和
细菌感染已成为当今世界人类健康的一大威胁。传统抗菌手段是采用抗生素杀菌,然而传统抗生素的长期使用不仅会导致药物疗效下降,还会导致细菌耐药性不断增强。因此,开发不易产生耐药性的新型抗菌策略迫在眉睫。近年来,纳米酶(Nanozymes)凭借广谱抗菌性及可忽略的生物毒性被称为“新一代抗生素”。然而,固有的低催化活性导致单独的纳米酶疗法无法实现较为彻底的杀菌,从而限制了它在抗菌领域的应用。另外,光热疗法(
随着物联网的普及,用户设备群增多,通信的流量需求快速增长。这使得人们日益增长的通信需求和通信系统的最大容量之间的矛盾日益凸显。如何进一步提高无线通信的信道容量成为迫切需要解决的问题。作为未来6G关键性技术之一,智能反射面(Intelligent Reflecting Surface,IRS)协助无线通信技术被认为是一种能提高通信数据速率的有效方案,该方案不仅可以提高系统通信数据速率而且能大幅减少硬
随着万物互联的发展,边缘计算作为一种新的计算模式,能够弥补传统的云计算模式难以应对网络边缘产生的大量数据以及越来越高的延迟需求的缺点。近些年,随着人工智能第三次浪潮的推动,基于深度神经网络的应用程序在工业和社会上得到了越来越多的应用。边缘计算和人工智能的碰撞产生了“边缘智能”。在边缘智能中,加速模型推理一直是研究热点,其中模型分割作为一种新颖的技术,能够有效地减少深度神经网络的推理时间,但是在不同
随着信息技术的快速发展,数字系统对于时钟信号的要求越来越高。锁相环作为频率综合器的重要实现方式广泛应用于数字系统、数据转换器、无线收发器等电路中,其性能的好坏成为制约数字系统快速发展的首要因素,因此对锁相环抖动性能的要求也更加严苛。电路中的电源电压总会含有噪声成分,而电源噪声会恶化锁相环输出时钟的抖动性能,因此基于高电源噪声抑制能力的锁相环设计就具有重要的应用价值与研究意义。文章首先对电荷泵锁相环
粒毛盘菌属是一类腐生性真菌,在深层培养条件下能产生多糖、色素、多酚等多种活性物质。本文以粒毛盘菌YM38发酵液分离纯化的胞外多糖LEP-1a为研究对象,对其进行基本结构表征、模拟消化、化学修饰以及体内外生物活性研究。主要的研究结果如下:(1)采用HPGPC、IC、GC-MS、FT-IR和NMR等方法研究分析得出LEP-1a的分子量为5.69×10~4 Da,由半乳糖、葡萄糖和甘露糖组成,摩尔比为9
动脉粥样硬化是心血管疾病的主要病理之一,严重危害着人类健康,然而目前的临床治疗手段效果差强人意。作为现在最受欢迎的生活方式“间歇性禁食”,已有短期临床试验表明,其可以改善机体内促动脉粥样硬化危险因素,如:血脂水平、细胞因子等,但是严格的动物实验验证和具体的分子机制仍是未知的。本研究中我们喂食低密度脂蛋白受体敲除(LDLR-/-)小鼠高胆固醇食物,并进行间歇性禁食(正常喂食3天,禁食1天,循环7/1