论文部分内容阅读
四旋翼倒立摆控制系统作为结合了空间一级倒立摆系统和四旋翼无人机的新型控制器实验平台,既保留了倒立摆非线性、强耦合、多变量、高阶次的特点,又引入了四旋翼的模型不确定性,更符合当前复杂实际系统的控制方法验证需求。四旋翼倒立摆控制系统的实现涉及软硬件实现,控制算法设计等方面,在已有研究中实现该系统的只有两例,其实现难度远非传统空间一级倒立摆可比,为了后续相关控制算法的研究,本文设计了四旋翼倒立摆实验系统,并实现了实物系统的稳定控制。本论文主要研究工作可以归纳为以下几个方面:(1)设计了一套完善的四旋翼倒立摆实验平台。根据实验需求,进行了软硬件方案的总体设计,完成了由四旋翼飞行器,控制计算机,室内光学运动捕捉系统构成的四旋翼倒立摆实验平台的硬件搭建,并在此基础上完成了软件功能的设计与实现,并进行了充分的功能测试与验证。(2)建立了四旋翼倒立摆控制系统仿真模型,并对系统关键问题进行分析。根据空间一级倒立摆模型和四旋翼无人机模型建立了四旋翼倒立摆系统的模型,并在平衡点附近对系统模型进行了线性化处理,根据模型分析了四旋翼倒立摆系统中普遍存在的支点偏离重心和四旋翼飞控系统姿态测量偏差的问题。(3)设计了基于PID控制器的四旋翼倒立摆系统各回路闭环控制方法及控制回路结构。根据四旋翼飞控系统姿态控制回路控制器结构和系统模型,设计了姿态回路参数整定方法。采用串级PID控制器,实现了四旋翼的位置控制。设计了基于改进PID控制器的四旋翼倒立摆系统多回路控制方法,实现了对四旋翼倒立摆系统摆杆位置和四旋翼位置的双重控制。通过仿真验证了方法的可行性和有效性,为四旋翼倒立摆实验提供理论指导。(4)测试了实验平台的基本功能并实现了四旋翼倒立摆实物系统稳定控制。实验结果表明,采用改进PID控制器的多回路控制方法满足四旋翼倒立摆系统控制需求,并具有一定的鲁棒性和抗干扰能力。本论文的研究虽然采用较为简单的PID控制器,但充分验证了文中系统设计是合理的,可行的,为后续的控制方法研究提供了实验平台和理论参考,对于四旋翼倒立摆系统的深入研究具有深远的意义。同时本文中所搭建的实验平台具有很强的拓展性,可以应用于四旋翼无人机其他方面的研究之中,是良好的四旋翼系统实验平台。