论文部分内容阅读
无线传感器网络是一项新兴的技术,它将集成了传感、计算、通信能力的节点组织成一个通信网络,将客观世界中的信息不断提供给人们加以分析、判断。这种网络的自适应性、抗毁性、易部署性和低成本,使得它在环境监测、医疗卫生、智能家居、军事等领域有着广泛的应用前景。如何提高网络的有效工作寿命、保证网络的易用性和数据传输的有效性以提高网络的整体性能是一个重要的研究课题,本文围绕这一主题展开了研究,侧重点在数据汇聚节点(Sink)的移动性、网络拓扑和路由技术。论文的主要贡献包括:(1)基于事件驱动的传感器网络中单移动Sink的部署针对事件驱动的传感器网络应用,分析网络中单移动Sink的部署方式,找到一种可以平衡网络生存时间和事件传递延迟的最优化移动轨迹,并推导出最优化移动轨迹的轨迹参数和网络生存时间与事件传递延迟之间的关系。仿真比较了最优化移动轨迹和其他几种移动轨迹的性能差距并验证了其最优性,最优移动轨迹性能的理论值与仿真值也基本吻合。(2)基于事件驱动的传感器网络中多移动Sink的部署在单移动Sink部署方式的研究基础上,首先研究了两个移动Sink时的两种移动策略,分别是在同一区域内协作移动和在划分区域内独立移动。分析结果表明同一区域内移动这种策略,移动半径存在一个最佳值,并且这种策略要优于Sink在划分区域内移动。最后讨论了移动Sink的数量和网络性能的关系。结果表明网络性能会随着Sink数量的增加而提高,但是过多的Sink数量对网络性能的提升很有限,甚至会出现降低网络生存时间的情况。(3)移动增强的可视化业务及其Sink容量分析首先介绍了一种新型的无线传感器网络应用:移动增强的可视化业务(Mobile Augmented Visual Service,MAVS),对其应用场景进行了描述,总结了网络体系结构和应用特征,并对其中存在的技术挑战进行了分析。在MAVS应用中,用户作为数据Sink以竞争方式从传感器节点获取数据,这和传统传感器网络中Sink间的协作方式有着很大的不同。因此针对MAVS应用中的Sink容量进行了分析,并且发现网络中存在的一些瓶颈节点将极大限制Sink容量。通过仿真验证了消除这些瓶颈节点,Sink容量将得到提升,并且提出一些办法来消除这些瓶颈节点。(4)基于流量限制的组播路由在MAVS应用中,存在多个Sink同时访问同一个传感器节点的情况,因此组播技术成为一个很重要的研究内容。提出了一种启发式的算法用于构建流量限制的Steiner树(Flow Constrained Steiner Tree,FCST),并且分析了这种算法的运算复杂度和对网络性能的提高。通过仿真对比,FCST算法不仅可以减少组播树的代价,而且可以支持更多的组播数量。