【摘 要】
:
重大装备作为国民经济发展的重要体现,其发展关乎我国国际地位,并且作为企业赖以生存的基础,也是企业生产管理的重中之重。随着重大装备日趋集成化、复杂化、精密化,维修任务难度的增加致使维修成本不断攀升。一旦重大装备发生故障,会给企业带来不可计量的损失。考虑维修人员是维修任务完成的决定性要素,维修“人员-任务”的匹配关系将是完成重大装备维修工作的决胜点。本文将从确定“人员-任务”匹配方案角度出发,以定量方
论文部分内容阅读
重大装备作为国民经济发展的重要体现,其发展关乎我国国际地位,并且作为企业赖以生存的基础,也是企业生产管理的重中之重。随着重大装备日趋集成化、复杂化、精密化,维修任务难度的增加致使维修成本不断攀升。一旦重大装备发生故障,会给企业带来不可计量的损失。考虑维修人员是维修任务完成的决定性要素,维修“人员-任务”的匹配关系将是完成重大装备维修工作的决胜点。本文将从确定“人员-任务”匹配方案角度出发,以定量方法解决重大装备维修问题,帮助企业达成维修任务满足时间约束且损失最小的目的。然而,优化后的“人员-任务”匹配方案的经济损失值与企业可承受损失值不符,致使企业成本管理目标无法实现。结合维修时间存在可调整的空间,本文将采用逆最优值方法,由果索引,在原维修时间参数下,将损失最小的“人员-任务”匹配原优化问题转化为以维修时间为上层决策变量、匹配方案为下层决策变量的双层规划逆最优值模型,达到最优值与企业给定的可接受值无限接近的目的,并针对模型特点提出求解算法。最终,通过数值分析验证模型、算法的适用性和有效性。本文研究内容如下:(1)重大装备维修“人员-任务”匹配逆问题的界定与分析。通过重大装备维修概述确定本文将重点研究重大装备的抢修和大修两种场景类型的维修问题,界定抢修和大修“人员-任务”匹配问题的研究边界及维修“人员-任务”匹配逆问题的研究范围,随后分析了本文优化过程并结合研究背景简要讲解了匹配、正优化与逆优化。(2)重大装备抢修“人员-任务”匹配逆最优值模型及算法。针对抢修情景,构建经济损失最小的“人员-任务”匹配正优化模型,然后通过优化维修时间参数,建立了以实际经济损失目标与企业设定的可承受损失值距离越小越好的双层规划逆最优值模型,根据模型特点设计了混合遗传-整数线性规划算法实现模型近优求解。(3)重大装备大修“人员-任务”匹配逆最优值模型及算法。结合大修背景,区分与抢修模型的异同,构建带有MAX时间函数的混合整数双层规划逆最优值模型。考虑模型特点,将模型化繁为简,随后设计上下层交替优化算法,实现模型的精确求解。(4)数值分析研究。以石化企业维修情况为依托,模拟维修数据,验证本文构建的抢修、大修逆最优值模型对重大装备维修“人员-任务”匹配问题研究的适用性和有效性。将成本控制思想与逆优化方法结合,使用运筹建模的方法解决重大装备维修“人员-任务”匹配问题,制定人员匹配方案并优化维修时间,指导维修任务快速有序地完成。
其他文献
目的:探讨IVIM、ASL成像对2型糖尿病(T2DM)患者早期肾功能损伤及分期的评估价值。对象与方法:选取2018年9月-2019年12月在天津医科大学代谢病医院内分泌科确诊的T2DM患者46例,根据24h尿微量白蛋白(UMA)水平将患者分为正常白蛋白尿组(NAU组,n=26)和微量白蛋白尿组(MAU组,n=20),同时纳入性别、年龄相匹配的38例健康志愿者作为正常对照组。采用Philips In
量子点因其发射光谱分布对称,单一波长激发,宽度窄,稳定性高,不易光解并且依赖于尺寸大小的特点,使得它与传统的有机染料荧光探针相比,更适合作为荧光探针。量子点荧光探针材料分镉系量子点和锌系量子点,其中锌系量子点因其低毒性成为荧光探针方向炙手可热的话题。核壳结构量子点可修饰单独的量子点的表面缺陷,使其稳定性提高,同时改善其发光性能。本项实验对传统的水相合成法进行改进,摒弃了传统水相相合成法高温高压等苛
正交频分复用技术(OFDM)由于其频谱效率低以及对载波频偏敏感,不能满足下一代移动通信中的新需求和应用场景。为了解决OFDM存在的问题,滤波器组多载波技术(FBMC)引起了广泛的关注。FBMC系统不采用循环前缀(CP),因此其具有较高的频谱利用率,而且采用经过良好设计的原型滤波器,具有较低的带外泄露,基于这些优点,FBMC技术有望在未来移动通信中得到应用。由于FBMC只在实数域上严格正交,这意味着
在全球能源危机的现状下,新能源的开发与利用得到了重点关注。因此压电纳米发电机、摩擦纳米发电机、光伏电池等一系列能量转换材料及器件被广泛的研究。柔性压电纳米发电机可从人体和周围环境收集机械能并转换为电能,在自供能可穿戴设备、智能化电子系统等领域具有重要的应用价值,因此压电发电材料的开发和性能提升是实现能量有效收集和转化的核心问题。本论文围绕柔性电功能复合材料这一领域,开展氯化锂(LiCl)在聚合物中
当今世界,人类的生产生活水平在不断提高,但随之带来的环境污染也越来越严重,其中大气污染首当其冲。化石燃料的燃烧,汽车尾气的排放及建筑装修中所使用的有机试剂的挥发,都会产生有毒、有害的污染性气体,将其排放到大气中会威胁着人类的身体健康。因而,找到能高效环保的检测和处理这些气体的材料是刻不容缓的。近年来,纳米材料的迅速发展已经明显改善了大气污染的问题。纳米材料由于其特殊的物理化学特性及纳米尺度的特殊结
股价崩盘是指在无任何信息前兆的情况下,上市公司股票价格突然大幅下跌的现象。中国股市在几十年的发展中已成为全球资本链条中的重要一环,但与西方发达国家成熟的资本市场相比,我国股市暴涨暴跌的问题尤为突出。股价暴跌现象的发生,不仅会使投资者遭受巨大损失,阻碍资本市场的健康发展,同时,还可能危及实体经济的稳定。因此,开展股价崩盘风险的相关研究,对于降低我国资本市场金融风险,维护市场的平稳发展具有重要的理论意
当常规光学电路的尺寸减小到纳米级时,光的传播会受到衍射的限制。然而,表面等离激元(Surface Plasmon Polaritons,简称SPPs)为构建此类纳米级光子学器件提供了途径。表面等离激元波导可以在纳米级上限制和操纵表面等离激元,并支持表面等离激元在其金属电介质界面处的传播。其中金属-电介质-金属(metal-dielectric-metal,简称MDM)波导由于其结构简单,易于制造,
伴随着科学技术的快速发展,低功耗物联网(Internet of Things,IoT)技术越来越被人们所认识和熟悉。相比于Zigbee、BLE、SIGFOX等物联网协议标准,IEEE 802.11ah具有传输距离长
在植被恢复过程中,干旱是限制植物幼苗生长发育的重要因子,在植物生长的任何时期都可能发生,特别是幼苗阶段,植物对水分要求严格,并且是植物生长发育的重要阶段。因此,在植物幼苗生长过程中,进行合理有效的水分管理对植株的的生长发育及产量的提高起着至关重要的作用。为了探究栓皮栎(Quercus variabilis)幼苗在干旱防御系统中的响应机制,本试验以栓皮栎幼苗(Quercus variabilis)为
近年来,随着维生素C在癌症治疗、疼痛治疗等方面的作用日益凸显,全球对维生素C的需求量进一步加大。目前维生素C的工业合成广泛采用莱氏法和二步发酵法,其具有高能耗、高污染、分子操作困难等难以突破的瓶颈问题。本研究将维生素C的生物合成途径转移至遗传操作技术成熟的酿酒酵母细胞中,赋予酿酒酵母合成维生素C的能力,以提高维生素C生产的稳定性、高效性和环境友好性。首先,本文尝试将产率最高、工业应用最广的二步发酵