难加工材料叶片游离磨粒辅助电解光整加工研究

来源 :南京航空航天大学 | 被引量 : 0次 | 上传用户:lzh8608
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高速磨粒流动辅助电解复合加工是一种在常规电解液中混入一定体积分数的磨粒进行表面抛光的光整加工方法。通过将磨粒的磨削作用与电化学作用相结合,可以进一步降低工件表面粗糙度,去除表面的凸起与凹坑,提高工件的表面完整性。由于难加工材料表面硬度高,直接加工比较困难,引入电解的方式可以提高加工速率,通过生成钝化膜的方式,降低磨粒损耗,增加磨粒使用寿命。本文针对难加工材料的高速磨粒流动辅助电解复合加工技术进行了研究,主要研究内容包括:(1)分析了该复合加工的加工机理,以法拉第定律和摩擦学理论为基础,推导出复合加工的材料去除公式。通过分析不同电解液浓度下两种材料的极化曲线,磨粒作用对加工电流大小的影响,以及对比不同磨粒加工出的工件表面氧元素含量的差异,证明了复合加工过程存在钝化现象,以及磨粒有助于去除电解产生的钝化膜。(2)搭建了应用于高速磨粒流动辅助电解复合加工装置,设计了基础实验的夹具,该夹具可实现90°正冲和0°侧冲两种冲液方式,并设计了单孔、阵列4孔以及阵列9孔三种正冲阴极。通过仿真结合试验的方式分析比较了不同冲液方式的加工效果,结果证明:阵列多孔阴极设计有利于提高工件表面电流分布的均匀性。相比于正冲,侧冲的冲液方式更有利于提高工件的表面完整性。(3)通过单因素试验分析了加工电压、磨粒粒径等不同因素对加工效果的影响,通过参数优化改善了工件表面质量。当加工电压为5V、磨粒目数为1200目、加工间隙为1mm、Na NO3浓度为10%、加工时间为5min时,SS304不锈钢表面粗糙度Ra可以从初始的0.4μm降到0.083μm。当加工电压为1V、磨粒目数为1200目、加工间隙为1mm、Na NO3浓度为10%、加工时间为5min时,TC4钛合金表面粗糙度Ra可从初始的0.4μm降到0.092μm。(4)通过幂函数分析和二次多项式分析对复合加工后工件的表面粗糙度Ra值和去除质量进行了预测,结果证明,二次多项式分析预测精度更高,并以此建立了表面粗糙度值Ra和去除质量关于加工电压、加工时间和加工间隙的经验模型。(5)初步设计了可用于叶片型面加工的夹具,并针对进气边和排气边不同进液方式、不同加工间隙展开仿真分析。仿真及试验的结果表明:当从进气边和排气边分别冲液5min,加工间隙为3mm时,加工出的叶片表面均匀性较好,表面的黑色氧化物得到了有效去除,局部表面粗糙度Ra值从初始的0.578μm降到0.154μm。
其他文献
涡轮盘榫槽、方形切缝扭簧等直纹面构件的低成本高效加工已成为目前研制生产的瓶颈。这些零件通常采用难加工材料,加工表面不允许出现重铸层或微裂纹等缺陷,电解线切割非常契合这类零件的加工需要。本文针对电解线切割加工大厚度工件时加工间隙内电解产物排出困难的问题,开展高速冲液电解线切割加工试验研究,提出径向冲液电解线切割加工方法,显著缩短加工间隙内电解液流动距离,改善加工产物的沿程累积现象,提高加工精度、加工
疏水与超疏水表面具备的自清洁、防锈、防冰和液滴控制等优异性能,使其在生活与工程领域具有广阔的应用前景。表面微结构已被证明对材料表面具备疏水与超疏水性能有重要的作用,但微结构如何有效地影响表面疏水性仍然没有得到很好的认识;此外,目前疏水性表面的制备方式主要是化学制备方法、溶胶-凝胶法、模板法等,但对于使用微铣削的机加工方式制备疏水表面依然鲜有研究。因此,本文选用微铣削加工方式进行表面微结构的制备,探
智能材料和结构通过感知外部激励和内部状态,合理地驱动材料和结构做出响应,在传感器、机器人、自动包装设备、航空航天、生物医疗等领域有广泛的应用。作为常见的智能材料,形状记忆聚合物(SMPs)因其具有多激励性、可设计性强、变形范围大等特点,与形状记忆合金和形状记忆陶瓷相比,在能源动力、柔性电子、自愈合材料和生物医疗等领域有更广泛的应用。近年4D打印机技术的发展,进一步拓宽其材料和结构设计空间,其更广阔
基于RFID和UWB的实时定位作为制造物联的关键技术之一,能够实时感知离散制造车间的生产状态,提供制造要素位置信息,广泛应用于车间监控领域。针对传统瓶颈识别方法存在实时性差、无法表征车间真实生产状态的问题,本文将实时定位技术引入离散制造车间生产瓶颈的识别和预测中,为瓶颈现象的研究提供了新的方法和思路。本文的主要工作包括:(1)分析离散制造车间瓶颈识别对实时定位技术的需求,总结了传统的离散制造车间瓶
多晶CBN是由微晶CBN颗粒与Al N结合剂在高温高压条件下烧结而成的超硬材料。由多晶CBN磨料制作而成的单层钎焊超硬磨料砂轮被认为是加工镍基高温合金等强韧性材料的理想工具,其原因主要在于:多晶CBN磨粒特有的CBN–Al N微观几何结构特征使得磨粒在磨削过程中,可以通过Al N结合剂的破碎促使磨粒表面的微晶CBN颗粒出露,并形成微切削刃,由此多晶CBN磨粒及砂轮具有自锐优势。然而,现有的多晶CB
立方氮化硼(CBN)砂轮是钛合金等难加工材料高效深切磨削加工的重要工具,然而现有的CBN砂轮无法同时满足难加工材料高效深切磨削对磨料层高孔隙率、高强度和优异减摩能力的要求。有鉴于此,本课题提出采用石墨烯改性并以球形尿素颗粒为造孔剂研制新型多孔复合结合剂CBN砂轮的构想,研究了开放孔隙结构对磨料层强度及微观结构的影响规律与作用机制、石墨烯对磨料层强度与减摩性能的影响规律和作用机制、石墨烯改性多孔复合
为了提高系统的动态性能,同时减轻因磁轴承失效造成转子跌落带来的严重损坏,本文将人字槽径向动压气体轴承引入磁悬浮轴承转子系统,研究动压气体轴承的支承特性、磁气组合轴承对系统动态性能的影响以及动压气体轴承作为保护轴承的可行性。搭建了径向磁气组合轴承转子系统试验台,采用有限差分法和牛顿迭代法求解静态雷诺方程和气膜厚度方程,研究了动压气体轴承承载力随转速、轴承宽度、轴承半径、气膜厚度、偏心率和槽型变化规律
数字孪生车间是智能制造背景下制造车间全息监控、制造系统精准分析、制造过程实时决策的有效手段。目前对于数字孪生车间的研究依然方兴未艾,如何构建生产要素的互联互通,确保虚实车间的真实映射,进而完成数据集成仍然是实现数字孪生车间的主要瓶颈。因此本文将OPC UA和多源信息融合技术引入数字孪生数据集成过程,通过OPC UA信息建模规约多源异构数据,实现物理信息融合和数字孪生数据的统一传输。本文的主要工作如
随着工业社会的日益发展,机械设备的精度不断升高、使用强度不断增大,为提供更好的润滑防护,润滑脂必须在低转矩、高极压、长寿命和耐腐蚀等性能方面不断发展方能满足需求。为改善抗磨性能,在润滑脂中加入固体添加剂是一种重要方式,如今碳纳米材料技术和产业的不断发展,越来越多关于碳纳米润滑添加剂的研究开始涌现,但由于团聚问题,碳纳米粒子在润滑过程中的不稳定问题未得到妥善的解决。此外,由于碳纳米材料分多种维度,对
一般磁轴承转子系统需要添加轴向保护轴承,而螺旋槽型动压气体止推轴承在低转速状态下会产生接触摩擦,若将两者结合,可以弥补各自的缺点,并使系统具有更好的轴向支承性能。本文研究轴向磁气组合轴承的支承特性和系统的动态性能,以及螺旋槽型动压气体止推轴承作为保护轴承的可行性。设计制作了轴向磁气组合轴承转子系统试验台,对磁轴承电磁力和气体轴承承载力进行了理论分析,对螺旋槽型动压气体止推轴承的槽深、槽数、槽宽比、