论文部分内容阅读
锌是生物体必需的微量金属元素,作为蛋白质的结构和催化成分参与到许多生理生化反应中。缺Zn是严重影响我国人民身体健康的微营养不良症之一,培育Zn强化性作物是克服Zn营养不良症的新策略。缺Zn同时也是严重影响作物生产的植物营养问题之一,培育高Zn效率的作物新品种是解决植物Zn营养不足的一种更具有环境亲和性的途径。另一方面,土壤重金属污染,包括锌污染,日益严重,传统的土壤修复方法耗费很大,植物修复是上世纪九十年代提出的治理土壤污染的新策略,是利用重金属超富集植物吸收和积累土壤中的重金属,达到降低土壤重金属浓度的作用。但是,由于已经发现的重金属超富集植物都存在生物量小,生长周期长的缺点,因此这一策略并没有真正在实践中得以应用。白菜类蔬菜是我国栽培面积和产量最大的蔬菜,包括一些生长周期短,生物量相对较大的栽培种群,因此对白菜类蔬菜进行Zn营养性状的遗传分析,一方面可以为改良白菜类蔬菜的营养品质和培育高Zn效率的白菜类蔬菜新品种提供理论基础;另一方面克隆与植物Zn超富集相关的基因,通过基因工程的手段创建能够超量富集Zn的白菜类植物材料,能够为植物修复技术的实际应用创造条件。 基于以上目的,本论文从以下几个方面对白菜类蔬菜的Zn积累和Zn胁迫下的耐性进行了遗传分析: 1.利用原位噬菌斑杂交法,进行了Zn超富集植物Thlaspi caerulescens的cDNA文库筛选,获得了7个Zn积累相关候选基因的全长cDNA,这些序列与拟南芥的同源基因的序列相似性为86-91%。通过对酵母锌运输缺陷型突变体zrtlzrt2、铁运输缺陷型突变体fet3fet4、锰运输缺陷型突变体smfl的功能互补以及提高了野生型对Cd的敏感性,证明了TcNKAMP3和TcNRAMP4具有Zn、Fe、Mn和Cd的运输活性;TcNRAMP3在Arabidopsis thaliana的nramp3nramp4突变体中过量表达挽救了缺Fe条件下植株的生长。由此证明了TcNRAMP3和TcNRAMP4作为金属转运蛋白参与了植物体的金属积累。 2.利用183个DH株系构建了大白菜的AFLP连锁图谱,该连锁图由10个连锁群组成,包括222个AFLP标记,覆盖基因组长度为1064cM,标记间平均间距为4.8cM。利用这一图谱,对大白菜叶片K、Na、Ca、Mg、Al、Cu、Mn、Fe、Zn和Sr等10种矿质元素含量和总磷含量进行了QTL分析,共找到22个与叶片矿质元素含量相关的QTL和2个与叶片总磷含量相关的QTL,这些QTL对性状的贡献率在6.8-18.8%之间。对这一群体的130个DH株系作了高Zn胁迫下耐性的QTL分析,发现了一个与高Zn胁迫下大白菜生长相关的QTL,和一个仅在相对更高的Zn浓度下出现的QTL。 3.对来自于我国不同地区的分别属于7个栽培种群的184个基因型的白菜类蔬菜和2个来自于荷兰和2个来自于美国的白菜类植物的Zn积累和Zn胁迫条件下的反应进行了调查,结果表明白菜类蔬菜的叶片Zn含量存在显著差异,变化范围在23-160μg g-1d.wt之间,叶片中Zn、Fe、Mn的积累显著相关。地上部或根部的相对生长量均适合于作为参数比较白菜类蔬菜对高Zn或缺Zn胁迫的耐性差异。白菜类蔬菜中存在高Zn胁迫耐性和Zn效率的显著差异。选出了两个对高Zn胁迫具有相对高耐性的基因型和一个具有高Zn效率的基因