超薄YAG晶体自旋转超精密磨削力模型与表面质量研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:JK0803Tangxu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着全固态激光器的应用逐渐广泛,对于其核心部件——激光晶体的表面质量提出了越来越高的要求。目前主要通过研磨与抛光手段以保证激光晶体的表面质量,但其加工效率很低。因此研究高效率、高质量的激光晶体超精密加工工艺具有重要意义。本文以钇铝石榴石(YAG)单晶为研究对象,基于自旋转磨削加工手段,对磨削加工中的磨削力与表面质量展开研究,旨在得到一种行之有效的激光晶体高效超精密磨削工艺。首先,建立了YAG晶体自旋转超精密磨削力模型。从单颗磨粒的磨削分析入手,指出了切削深度是决定材料去除方式的直接因素。根据自旋转磨削材料的去除方式得到了磨粒的切削深度,结合弹塑性力学与断裂力学分别建立了塑性域磨削与脆性域磨削下对应的磨削力模型。在模型建立中综合考虑了磨粒分布、工件材料与砂轮结合剂的弹性变形以及应变率效应的影响。其次,研究了超薄YAG晶体自旋转超精密磨削中的翘曲问题。结合有限元与理论分析,建立了自旋转磨削翘曲模型,模型考虑了亚表面损伤深度与加工应力对工件翘曲程度的影响。研究了YAG晶体自旋转超精密磨削中的崩边问题。通过有限元与理论分析手段,分析了边缘形状与切削深度对脆性裂纹的扩展以及崩边的影响。基于经典脆性裂纹系统建立了崩边理论模型,考虑了应变率对材料崩边程度的影响。最后,开展了磨削实验,对建立的翘曲与崩边模型进行了验证,并通过建立磨削力、工件翘曲与工件崩边模型的联系,对磨削力模型进行了间接的验证。通过实验得到了磨削参数对翘曲、崩边与表面粗糙度的影响规律。基于实验与模型,设计了适用于激光晶体的自旋转磨削加工工艺方案,该方案综合考虑了加工效率与表面质量。得到了符合要求的光滑表面,该成果对高效超精密磨削加工激光晶体具有一定指导意义。
其他文献
半球谐振陀螺是一种结构精简、无运动部件的哥式振动陀螺,因其高精度、长寿命、高可靠性而在惯性技术领域广受关注。目前已成功应用于深空探测、潜艇航行、武器巡航等各领域,并且可持续工作数年,是未来引领惯性技术发展的重要器件。半球谐振子是陀螺的核心部件,陀螺仪的正常工作依赖于谐振子运动时的进动效应。理想情况下半球谐振子可以持续高精度工作,但是由于实际环境中存在各种形式的阻尼导致谐振子能量的耗散,因此半球谐振
智能反射面(Intelligent Reflecting Surface,IRS)有望在今后的移动通信技术中得以广泛使用。随着智能反射面的辅助,通过联合基站主动波束赋形(Active Beamforming)和智能反射面被动波束赋形(Passive Beamforming),移动通信系统的频谱效率能够得到有效提高。本文针对多用户下行多输入单输出(Multi-Input Multi-Output,M
随着无线通信技术在近几年飞速发展,对通信系统中数据传输速率要求不断提升,然而,无线通信的传输环境是恶劣的,如今在大多数通信场景中,不仅发射机和接收机之间会存在大量的遮蔽物造成多径效应,而且发射机与接收机有可能都处于高速运动中造成多普勒效应,多径效应会产生频率弥散,多普勒效应会产生时间弥散,这就是“双弥散”的信道传输环境。如果通信信号在此类信道中进行传输,而又不采取任何抗干扰技术,接收信号将会产生严
随着全球信息化的快速发展,人们对高通信质量、高速率的通信服务的需求越来越显著。由于地面蜂窝通信的局限性,使得处于边远地区的用户无法接受服务。卫星通信以其通信距离远、通信质量稳定的特点可以作为地面通信的补充为用户提供服务,近地轨道(Low Earth Orbit,LEO)卫星的轨道高度低,通信时延小,相对于对地静止轨道(Geostationary Orbit,GEO)卫星更适合传输话音和数据业务。L
近些年来,高频(HF)雷达广泛应用在海平面的目标探测等领域。HF雷达系统通常2-30MHz的频率范围内运行。在复杂的电磁环境干扰下,需要在更低的快拍下进行高精度的高频雷达目标个数估计。抑制天线之间的互耦效应,是提高雷达目标个数估计的有效方法。因此,本文研究高频雷达目标探测背景下,提高目标个数估计能力的方法。首先,研究了有限快拍下,经过协方差矩阵重构的目标个数估计方法。对于高频雷达而言,更高的目标个
金刚石作为第三代超宽禁带半导体材料,力学性能优秀,热导性良好,室温热膨胀系数小,对于大部分激光波段具有很好的透过性,由于金刚石的这些特性,在加工金刚石时激光是很好的方法。水导激光加工可以延展激光的焦点,提高其沿轴向加工的效率,同时热影响区面积小、加工过程无熔渣;飞秒激光脉宽极短,加工时作用区域内电子温度瞬间升高,电子变成等离子态并以喷射的方式脱离,因此热影响极小,加工表面质量很高,为满足金刚石微槽
GaAs金属半导体场效应管(GaAs MESFET)广泛应用于卫星、雷达、电子对抗等领域,在微波器件及集成电路中独树一帜。随着国内微波技术的日益发展,研究国产新型GaAs MESFET在空间环境中的可靠性成为了一个亟待解决的问题。本文以国产新型GaAs MESFET为研究对象,研究了该器件在低能电子、高能电子、低能质子以及高能质子作用下的辐照效应及损伤机制。150 keV低能电子辐照研究结果显示,
光电耦合器因其体积小、使用寿命长、抗干扰能力强、无触点隔离性强而被广泛应用在航天器通讯系统中,但空间环境中的带电粒子会对器件造成损伤,因此研究光电耦合器的空间辐照损伤效应就具有十分重要的工程和学术意义。本文选用GD4N24型光电耦合器作为研究对象,进行了30MeVSi离子、1MeV中子和不同剂量率γ射线辐照实验,结合4200半导体测试仪测试考察了光电耦合器电性能变化规律,利用深能级瞬态谱检测分析了
随着导航卫星的不断发展,导航反射信号的应用受到越来越多的关注。由于导航信号的成本低,覆盖范围广,全天时等特点,所以将其作为无源雷达的发射源在目标探测领域具有较大的优势。基于导航卫星信号的目标探测系统实质是一种双基地被动雷达,相对于单基地雷达该系统不需要特定的发射源,它的发射源可以是任何一颗导航卫星,接收机可以搭载在飞机、地面车辆或者固定在地面对探测区域进行目标探测,因此该系统可避免雷达静默等问题。
高频地波雷达在对海监测领域有着良好的覆盖范围、实时性与分辨率,因而其在全球范围内得到大力支持与发展,并在海洋气象预报、对海环境监测等方面进行了广泛的应用。海态反演在反演流场方面较为成熟且准确,但是对于单站雷达而言,其不可探测洋流的切向速度;在反演浪场和风场方面其仍存在诸多的限制与不足。该领域中通常是风场、浪场、流场分别进行提取与反演,使得各项海态参数相对独立,因此单纯的海态反演没有利用到海洋动力学