论文部分内容阅读
随着环境问题的日益加重,可再生能源发电比例逐渐提高,高压直流输电系统逐步取代传统输电系统,直流电流互感器为系统中的线路控制、计量、保护等环节提供输入信号,是高压直流输电系统中的重要设备。光学直流电流互感器具有测量频带宽、动态测量范围大、可直接与数字设备接口通信等优点,能很好地满足智能电网的需求,因此研究一种高精度的光学直流电流互感器对于高压直流输电系统的稳定运行至关重要。然而,光学电流互感器直接用于直流测量时仍存在输出信号信噪比低和信噪频带重叠等问题,这些问题会直接影响光学直流电流互感器的测量精度。为了解决上述问题,本文从改进传感单元材料和信号处理算法两方面入手,主要进行如下工作:首先,本文建立传感系统的数学模型对各个环节的输入输出量进行分析,得出传感系统的噪声主要来自光电转换环节的结论,分析噪声特性作为后续提出信号处理算法的理论基础。提出采用TGG晶体作为传感材料,利用其费尔德常数较高的特点来提高输出信号的信噪比和测量灵敏度。搭建法拉第光学实验平台,对比TGG晶体与ZF-7磁光玻璃的传感性能。研究TGG晶体的费尔德常数理论,并通过温度实验对其温度特性进行探究,最终根据温度特性提出一种温度补偿方案。其次,本文提出一种基于多重自相关算法和锁定放大器的二重相关检测算法。通过仿真对比不同信号处理算法的测量误差并探究信噪比对测量误差的影响。针对电力暂态信号,本文提出一种加窗二重相关检测算法,对仿真得到的短路电流进行信号处理以验证暂态算法的有效性,研究窗函数的长度对信号处理效果的影响,并确定窗的长度。最后,建立光学直流测量系统模型并搭建出一套完整的实验平台,包括硬件系统以及基于Labview的软件系统。通过稳态实验对比不同传感材料和信号处理算法的测量误差以验证本测量系统的优越性。稳态实验表明,本测量系统的线性度良好,可以有效降低测量误差,将测量误差控制在0.3%左右。通过暂态实验验证了本系统用于暂态信号测量时的可行性,暂态实验中幅值误差为0.5%,能够反映待测电流的波形及幅值,满足暂态测量要求。