【摘 要】
:
传统半导体材料,如Si、GaAs等,已愈发难以满足制造业日趋苛刻的需求。因此第三代半导体材料如碳化硅、氮化镓以更为理想的材料性能得到了功率半导体行业研究人员的广泛关注。其中4H-SiC由于具有高可靠性的外延、较高的电子迁移率、超高的禁带宽度、较大的电子饱和漂移速度、较大的临界击穿场强以及低迁移率、低各向异性等优异特性,以其为衬底的功率器件在电网、船舶、高速动车、电动汽车等领域得到了广泛应用。在众多
论文部分内容阅读
传统半导体材料,如Si、GaAs等,已愈发难以满足制造业日趋苛刻的需求。因此第三代半导体材料如碳化硅、氮化镓以更为理想的材料性能得到了功率半导体行业研究人员的广泛关注。其中4H-SiC由于具有高可靠性的外延、较高的电子迁移率、超高的禁带宽度、较大的电子饱和漂移速度、较大的临界击穿场强以及低迁移率、低各向异性等优异特性,以其为衬底的功率器件在电网、船舶、高速动车、电动汽车等领域得到了广泛应用。在众多电力电子器件中,SiC MOSFET因其优异的高频特性、高温特性、高速开关特性已在特高压直流输电、电动汽车等领域得到应用。近年来,我国也越发重视碳化硅电力电子器件的研究发展。在产品化过程中,高温栅偏和高温反偏试验可验证SiC MOSFET的高温可靠性,通过对比试验前后器件动静态特性参数的变化情况可研究国产器件的相关特性。本文首先研究了测量仪器对SiC MOSFET的静态特性参数测试结果的影响,通过和AGILENT B1505A对比验证了专为大功率电力电子器件测试设计的LMSYS测试台并不适用于中低压碳化硅器件的动静态特性测试。随后采用标准差、偏度、峰度、偏离度和变异系数评估了碳化硅MOSFET动静态特性参数:导通电阻Rds(on)、阈值电压VGS(th)、跨导gfs、漏源极电容CDS、栅漏极电容CGD、栅源极电容CGS、上升时间tr、下降时间tf、开通延时td(on)和关断延时td(off)的分散性。设计了双器件并联均流试验,分析了器件导通电阻Rds(on)和阈值电压VGS(th)对器件间电流分布的影响。最后搭建了可同时进行HTGB和HTRB试验的高温综合试验平台,进行了 30只器件的高温可靠性试验,测量了 30只器件高温试验前后的动静态特性参数,通过拟合分析确定高温可靠性试验会影响器件的阈值电压和跨导,而对导通电阻和极间电容几乎不会产生影响。且除阈值电压外,高温可靠性试验后器件的静态特性参数多数呈上升趋势。并通过拟合试验前后器件特性参数的变化率与其参数值间的曲线确定参数变化率与其参数值基本呈负相关。最后基于测试结果,提出了一种适用于1200V/20ASiCMOSFET高可靠性需求的阈值,满足上述阈值后器件在高温可靠性试验前后特性参数变化率可控制在8%以内,进而提升器件在长期高温环境中的可靠性。
其他文献
电网智能化的提高和能源互联网建设的发展,使得电力通信网承载的业务在种类和规模上都有所提升。电力需求响应技术对能源需求侧进行管理,优化用能,是实现“碳中和”的重要途径,需要电力通信网为其提供支撑。保障电力业务的可靠传输对于电网稳定运行有着重要的意义。电力通信网由环网向网状网过渡,传统线性保护方法无法实现对有限带宽资源的高效利用,网络风险、业务流量特性等因素都会对电力业务的传输产生影响。基于上述问题,
全球疫情的肆虐加快了云计算发展的进程,云计算相关业务需求不断变大,这无疑给云数据中心带来了前所未有的压力,同时数据中心耗能过高也阻碍了云计算的发展。虚拟化技术的发展为解决数据中心能耗问题提供了较好的思路,虚拟机迁移整合不仅能够平衡数据中心的资源利用率,提高用户体验质量,同能节约数据中心的电力能源消耗。目前基于节能的虚拟机调度策略已有很多,并取得了较好的效果。但大多虚拟机调度策略仅将实时负载情况作为
随着电网的大规模互联和能源互联网的兴起,电力通信网建设的要求进一步提高。系统保护通信专网,是在传统电力通信网基础上建立的,其一方面要契合区域电网的系统保护需求,另一方面要满足电网信息的跨区域交流。因此,开展系统保护通信专网可靠路由方法研究具有重要实际意义。本论文针对系统保护通信专网的业务可靠性问题,开展了系统保护OTN通信专网可靠路由优化研究和系统保护通信专网级联故障可靠路由优化研究。论文首先针对
弹性光网络(Elastic Optical Network,EON)支持更细粒度和可变带宽的频谱调整方式、灵活的载波调整策略,能够更好地应对复杂多变的网络业务需求,改善频谱资源利用率。EON的核心问题是路由选取和频谱分配问题(Routing and Spectrum Assignment,RSA),如何根据业务请求的带宽大小,在源节点、目的节点之间建立一条工作光路,分配连续的频谱资源,成为人们关注
Q频段(30-50GHz)作为毫米波的近频段,因其具有更高频率、更大带宽、更高速率在卫星通信领域广受关注。Q频段的信号波长与大气中物质的尺寸相近,更易受到外界环境的干扰,因而在保证链路质量的前提下,Q频段卫星通信对信标接收系统的设计以及接收天线安装的精确度提出了更高的要求。本文基于丹麦奥尔堡大学毫米波研究组内访学期间的实验工作,在综合考虑各方面成本的情况下以超外差接收结构为基础,创新利用空间、角度
随着中国经济的高速发展,中国的汽车保有量稳步增长,露天停车位已经无法满足日益增加的停车需求,地下停车场数量逐渐增多。然而地下停车场有立柱、墙体等结构,空间狭窄、视线受限、结构复杂,造成寻车困难、车位浪费等问题。借助于定位技术,可以帮助人们进行路径规划,找到空闲车位。卫星定位系统是目前使用最为广泛的定位技术之一,而在室内环境中,卫星信号容易受到建筑物的阻碍,GPS定位误差较大,此时就需要借助其他技术
过渡金属硫族化合物因其类石墨烯且带隙可调的特性,使其在光电子器件制备上拥有着诱人且广阔的前景。为了能将过渡金属硫族化合物广泛的应用在光电器件方面,选择合适的制备工艺及应用走向极为重要。寻找最佳的制备工艺,减小接触电极与过渡金属硫族化合物之间的接触电阻,是研究其光电特性并实现生产与生活应用的前提。本文系统的介绍了利用聚二甲基硅氧烷和机械剥离法相结合的方法制备Bi2O2Se场效应晶体管、WSe2场效应
5G低频段移动通信系统的商用化正在全球开展,随着业务需求及机器接入规模的不断增长,5G毫米波系统的商用化已为期不远。传统的信道模型建立在链路级信道测量的基础上,信道测量费时耗力,无法很好地反映通信环境系统及传播特性。随着人工智能技术的发展,基于大数据预测移动通信信道是未来信道研究的重要方向,而射线追踪是产生信道大数据的有效途径。鉴于未来信道大数据的需求,本文开展了基于射线追踪的软件平台搭建及5G毫
随着社会的发展和无线通信技术的不断演进,数据流量业务需求呈现爆炸式增长。为减少带宽需求与供给之间的差异,学术界提出终端直通通信(Device-to-Device,D2D)技术,该技术可使相邻节点之间不通过基站,利用小区资源直接通信,具有高速率、低时延和低功耗的特性,被认为是提高蜂窝网络(Cellular Networks,CNs)频谱效率和系统吞吐量的关键技术。然而,D2D技术也并非是长久之计,移
钙钛矿材料由于优异的光电性能在太阳能电池、发光二极管、激光器、探测器等领域受到广泛关注,随着组分改性、晶界和陷阱钝化技术的发展,钙钛矿的光电转化效率和稳定性得到进一步提升,钙钛矿探测器研究也因此成为研究热点和前沿课题之一。本文面向新型钙钛矿探测器的材料生长和器件研制开展研究,首先选取了两种不同钙钛矿体系,通过调整实验参数在经过预处理的玻璃基底上分别制得了不同的钙钛矿薄膜,并利用一系列材料表征手段探