【摘 要】
:
聚乳酸(PLA)作为一种生物可降解材料,具有良好的透明性、光泽度、可再生性等优点。然而PLA成本高、韧性低、脆性大的缺点,限制了其在包装领域的应用,通常需要改性以提高性能。在众多改性剂中,天然植物纤维具备来源广泛、可再生、可降解等优势,已成为制备可降解复合材料的优良改性剂。本课题针对PLA的缺点,以三种硅烷偶联剂(KH550、KH560、KH570)作为界面改性剂,对废纸纤维进行表面修饰,二氯甲烷
论文部分内容阅读
聚乳酸(PLA)作为一种生物可降解材料,具有良好的透明性、光泽度、可再生性等优点。然而PLA成本高、韧性低、脆性大的缺点,限制了其在包装领域的应用,通常需要改性以提高性能。在众多改性剂中,天然植物纤维具备来源广泛、可再生、可降解等优势,已成为制备可降解复合材料的优良改性剂。本课题针对PLA的缺点,以三种硅烷偶联剂(KH550、KH560、KH570)作为界面改性剂,对废纸纤维进行表面修饰,二氯甲烷作为溶剂,制备废纸纤维/聚乳酸复合材料。研究了打浆时间、废纸纤维添加量和硅烷偶联剂对复合材料的微观结构、断面结构、官能团、力学性能及热分解过程、结晶性能的影响。通过傅里叶变换红外光谱分析图(FT-IR)测定了改性前后的废纸纤维的官能团,结果表明偶联剂成功连接到废纸纤维表面。利用扫描电子显微镜(SEM)观察了复合材料的拉伸断面的微观结构,结果表明改性后的废纸纤维的表面更加光滑,与基体PLA间的界面相容性有所改善。利用差示扫描量热仪(DSC)测定了废纸纤维/PLA复合材料的热性能,结果表明硅烷偶联剂的使用,可以提高复合材料的熔融温度。利用万能试验机分析了复合材料的力学性能,结果表明添加适量的废纸纤维可以显著提高复合材料的力学性能,但添加过量会降低复合材料的拉伸强度,同时改性废纸纤维对复合材料的力学性能增强效果最为明显。在废纸纤维添加量相同的条件下,打浆时间为30 min时的复合材料力学性能增强最明显。废纸纤维添加量为25 wt%时复合材料的力学性能得到显著改善,其中偶联剂KH560对复合材料的改性效果最佳。用X射线衍射测试(XRD)分析了废纸纤维/PLA复合材料的结晶情况,结果表明废纸纤维的加入可以促进PLA的结晶,但并不会改变PLA的晶型。用热重分析仪(TG)分析了废纸纤维/PLA复合材料的热分解性,表明改性复合材料比改性前复合材料的热分解温度要高。但与基体PLA相比,改性前后复合材料的热分解温度均有所下降,且热分解温度随着废纸纤维添加量的增加而不断降低。
其他文献
随着“智能制造”进程的加快以及市场激烈的竞争,印刷制造企业必须能够迅速响应市场多品种、小批量、短交期、定制化的印刷生产需求,可重构的印刷制造系统为实现这一目标提供了最佳方式。可重构制造系统既能快速重组或更新,及时调整单元的生产功能和能力以响应市场需求的变化,又能提高产品质量、降低成本、缩短交货周期,因此本课题以可重构印刷制造系统为研究对象,针对可重构印刷制造单元状态识别以及重构方案优选问题展开研究
作为一种新型的热电材料,ZnO具备良好的热稳定性和化学稳定性,其来源丰富且无污染,在中高温热电领域拥有广泛的应用前景。然而其热电性能相对于传统的热电材料有待提高。通常情况下可通过掺杂改变ZnO的微观组织调控电阻率与塞贝克系数来提高功率因子进而改善其热电性能。本文采用固相反应法制备了 Ga掺杂ZnO、Ti掺杂ZnO和Ga-Ti共掺杂ZnO,研究了其微观组织、电学性能与热电性能,探讨了微观组织与电学性
MoAlB相是一种新型的类MAX相,相关研究表明其具有良好的综合力学性能以及优异的高温抗氧化性能,于是MoAlB合金在高温结构材料和高温抗氧化材料等领域有着广阔的应用前景。因此,对MoAlB合金的制备及抗氧化机理等方面的研究显得迫切而重要。本研究首先采用机械合金化法制备不同配比的Mo-Al-B合金粉体(Mo:Al:B=1:1.2;1.3:1,at.%)并分析机械合金化时间对合金粉体的影响规律,然后
钢铁材料是工业、建筑等领域应用广泛的材料之一,但是每年因其强度和耐磨性差导致很多钢材失效,而制备陶瓷增强钢铁基复合材料是提高钢铁材料强度和耐磨性的可行方法。目前陶瓷增强钢铁基复合材料的结构主要包括均匀分布、层状分布、网状分布和束状分布等。其中束状结构具有增强复合材料强度的同时提高材料韧性的优势。束状分布的制备方法主要包括粉末冶金法、铸渗法、特种铸造法和课题组前期研究提出的固态扩散法等,其中固态扩散
超疏水涂层具有很多独特性能,将其应用于玻璃表面,制备玻璃基透明超疏水涂层,具有广泛的应用前景。然而,在现阶段的实际应用过程中,还存在一些问题,比如涂层与基底表面附着力不足、易脱落;涂层稳定性差、耐酸碱能力低;制备方法复杂、对设备及制备条件要求严格等。本论文的目的是制备与基底附着力良好、耐久性佳、制备工艺简单、可满足户外作业要求的玻璃基透明超疏水涂层,主要研究内容及结论如下:(1)通过溶胶—凝胶过程
本文采用水热法合成了负载镍粒子石墨烯(Ni-doped graphene)复合粉末,并通过粉末冶金法制备了负载镍石墨烯增强镍基块体复合材料。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线光电子能谱仪(XPS)对负载镍粒子石墨烯复合粉末进行表征。通过光学显微镜(OM)、扫描电子显微镜(SEM)、能谱分析(EDS)和X射线衍射仪(XRD)对负载镍石墨烯增强镍基复
注水是油田增产的一种新方法,但由于注水为高矿化度的水介质,加之油井周围有较高含量的H2S等介质,这样的混合水质会对注水系统产生严重的腐蚀,从而极大地影响油田的开采和油田设备的使用寿命。注水介质中添加缓蚀剂可有效防止腐蚀,尤其当注水管表面形成钝化膜后可以减轻注水介质的腐蚀,但是喹啉缓蚀剂在钢表面成膜机理尚不清楚,特别是对于已成膜的表面在使用过程的受到划痕损伤后膜的修复能力的研究仅限于理论分析上,极大
铝基复合材料(AMCs)因其轻质高强,良好的导电导热性能及耐磨性等特性,在航空航天、电子工业等领域具有广泛的应用前景。与其他增强体相比较,六方氮化硼(h-BN)具有高熔点(>3000K)、高导热及优异的耐高温性等诸多优异性能,被视为AMCs增强体的最佳选择之一。由于BN的化学惰性、层间结合力弱,在一定的温度下,BN与Al会发生原位反应生成AlN及AlB2,但是目前对该原位反应机理以及反应产物对铝基
功能梯度材料(Functionally Gradient Material,FGM)的化学构成、微观结构和原子排列由一侧向另一侧呈连续梯度变化,从而使材料的性质和功能也连续地呈梯度变化。正因为功能梯度材料这一独特性能使其广泛应用于航空航天、生物工程、核工业等多种领域中。目前,很多研究将快速成型制造(Rapid Prototyping Manufacturing,RPM)原理应用于FGM的制备,但这
In2O3因其所具有的良好光学和电学性能而被广泛应用。近年来,有研究表明高温真空退火后非掺杂的In2O3薄膜及较高衬底温度下制备的掺钼In2O3(IMO)薄膜均表现出室温铁磁性,In2O3基半导体有关室温铁磁性研究的报道使兼具半导体性质和磁学性质的In2O3材料再次引发了研究者的极大关注,特别是对其磁性的起源仍存在着很大争议。此外,关于含本征缺陷体系的光学性质未见较为系统的计算分析。本文以第一性原