论文部分内容阅读
粘度的准确测量对于监控工艺阶段质量和最终产品性能具有重要意义。多数粘度测量方法仅考虑了液体粘滞效应对传感结构振动特性的影响,往往忽略了液体弹性的影响,在测量弹性液体(如应用广泛的聚丙烯酰胺、羟乙基纤维素溶液)粘度时会引入一定误差。本文提出将管道L模态导波应用到粘弹性液体粘度测量,试图明确充液管道导波特性与充液粘度、弹性的关系及其限制条件,从而确定一种只对粘度敏感、或者能够清晰地分离粘度、弹性影响的粘弹性液体粘度测量方法。研究成果不但提供了一种新颖的粘弹性液体粘度测量方法,还有力推动了充液管道导波理论的发展。本文围绕基于管道L模态导波的粘弹性液体粘度测量,进行了以下四个方面的研究:(1)提出基于3D打印柔性铰链和光纤位移传感的液体属性测试系统,用于观察和分析液体粘弹性。将液体弹性、密度、粘度作用等效成敏感振动元件的附加刚度、质量和阻尼。核心振动部件无需装配和润滑,消除了不确定性阻尼/刚度的影响,只保留待测液体的和固定的铰链阻尼/刚度,保证了测试精度,可为计算充液管道导波特性提供基础液体属性数据和参考。实验还表明液体附加刚度与储能模量强烈相关、附加刚度由液体弹性引起。(2)开发了基于全局矩阵法的充液管道导波计算程序。用于计算单层和多层圆柱/管导波的相速度-频率曲线、群速度-频率曲线、衰减-频率曲线、位移场分布,通过实验和有限元仿真验证了所开发算法、程序的正确性,是深入分析液体粘弹性对充液管道L导波影响规律的基础。(3)针对传统粘度计精度易受液体弹性影响、常规L导波频散对粘度不敏感的问题,通过计算分析提出基于毛细管导波的粘弹性液体粘度测量方法。建立了频散曲线截止频率与毛细管内径、液体粘度、密度的数学关系。粘度很高或内径很小会使L模态导波从压缩主导转为剪切、压缩共同主导,从而引发新L导波。小管径新L导波频散曲线随着充液粘度增加而向右伸展并可用截止频率度量。(4)搭建了毛细管导波法粘度测量系统,同时为了克服PZT测量毛细管导波时的选频性衰减和耦合效率低,提出了工作点可追踪的高灵敏针形光纤水听器。实验证明了毛细管导波频散曲线截止频率与充液粘度之间的线性关系、精密度随着毛细管直径的降低而增加、充液毛细管导波对液体粘度敏感而对弹性不敏感,最终实现了基于毛细管导波的粘弹性液体粘度测量。