论文部分内容阅读
本文首先对聚合物微球P(MA-AM)的合成工艺条件进行了优化实验,通过考察单体浓度、分散剂浓度、引发剂浓度以及混合溶剂比例等因素对聚合反应后聚合物分子量的影响,对分散聚合法的合成工艺条件进行了优化。得到最佳的优化结果为:乙酸乙酯∶乙醇=7∶3、单体浓度:0.4×102g/L、引发剂浓度:0.24g/L、分散剂浓度:2.0g/L。其次成功的制备出纳米SiO2、纳米Fe3O4@SiO2粒子以及新型SiO2/P(MA-AM)和Fe3O4@SiO2/P(MA-AM)复合微球调剖剂。其中,利用共沉淀法制得的纳米Fe3O4颗粒具有一定的球形形貌,但由于其自身的磁性特征,出现明显的团聚现象;采用分步加入TEOS的方法,通过控制TEOS的加入量制得的纳米SiO2粒子以及Fe3O4@SiO2复合粒子形貌良好、单分散性良好、粒径均一;采用傅里叶红外光谱仪、扫描电子显微镜以及透射电子显微镜对聚合物复合微球的结构进行了表征分析,表明在Fe3O4粒子表面形成了稳定的SiO2结构,即核壳型;硅烷偶联剂KH-570对SiO2粒子以及Fe3O4@SiO2复合粒子进行了成功的改性;经过分散聚合反应之后,SiO2/P(MA-AM)复合微球和Fe3O4@SiO2/P(MA-AM)复合微球都将SiO2粒子或Fe3O4@SiO2复合粒子完全的包覆在微球的内部,构成了无机-有机聚合物复合微球结构。继而对制得的聚合物复合微球的综合性能进行了考察研究,从溶胀性、流变性以及封堵性方面对其进行了分析考察。结果表明:聚合物复合微球具有良好的吸水膨胀性能,并且具有一定的耐盐耐温以及封堵性能。最后通过岩心流动装置实验,考察研究了聚合物复合微球的调剖堵水性能,发现聚合物复合微球SiO2/P(MA-AM)与Fe3O4@SiO2/P(MA-AM)对模拟岩心均具有较高的封堵率,尤其是对于中低渗透岩心具有更为良好的封堵效果;在水驱的基础上,SiO2/P(MAAM)复合微球体系可提高采收率在16%左右,Fe3O4@SiO2/P(MA-AM)复合微球体系可提高采收率在9%左右。