基于相关滤波的上下文感知目标跟踪算法研究和设计

来源 :中国石油大学(北京) | 被引量 : 0次 | 上传用户:abczvw
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目标跟踪是在视频初始帧中选定目标的前提下,在后续帧中检测到相同目标的任务。近些年来,使用深度学习的目标跟踪方法取得了较好的效果。但高维的深度特征及频繁的卷积和池化运算造成了跟踪延时,跟踪过程中目标的外观变化和完全遮挡发生模型漂移。为了解决上述问题,本文基于相关滤波跟踪算法,对深度特征进行优化;并利用上下文信息和时间信息改进上下文感知相关滤波模型,来提高目标跟踪的精准度。本文的主要研究内容如下:(1)上下文信息对于相关滤波器的构造十分重要,许多跟踪算法使用余弦窗口缓解图像边界效应,同时却也减弱了上下文区域包含的信息。针对这一问题,使用加权策略来凸显不同上下文区域对目标跟踪的贡献,并加入时间正则项,确保滤波参数更新在时间上的连续性,防止模型更新发生突变,使得响应效果更具有鲁棒性。该算法的跟踪精度相比于传统相关滤波跟踪算法有了较大的提升,并且能有效应用于目标尺度变化,快速旋转等复杂场景。(2)针对深度特征在目标跟踪中存在冗余,造成跟踪延时这一问题,提出一种使用预训练的自动编码器压缩特征方法。首先采用ImageNet数据集训练基自动编码器。不同类型目标的特征空间并不相同,在基自动编码器上训练多个特征压缩器,基于特定压缩器选择网络匹配合适的自动编码器来压缩特征。该算法不仅保持了跟踪准确率,而且相比其它使用深度特征的算法跟踪速度有了明显提升。最后在具有代表性的OTB数据集上进行了大量实验,实验结果表明本文所提出的滤波模型能够有效适应尺度变化,遮挡等复杂场景,在对特征空间优化后,跟踪性能明显提升。
其他文献
在化工系统的运行过程中,系统的操作条件以及系统参数会发生改变,应用控制策略可以实现系统的在线控制,以使系统在投入使用中满足操作和控制要求。换热网络是典型的慢时变过程,其结垢热阻以及操作条件会随着运行时间逐渐变化,为了满足其操作要求,往往会在换热网络系统的设计中预留一定裕量,裕量设计可以增加在控制过程中的可操作性,但裕量的大小与过程系统的经济性相关。设计裕量过大会导致系统前期的投资费用大幅升高,裕量
在实际工业过程控制中,被控对象一般为多变量非线性系统,在其内部必然存在一定程度的耦合,且输入输出特性与工作点有关。考虑控制安全可靠的要求,工业过程的底层控制系统主要采用分散常规PID控制,应用于多变量非线性系统有一定的难度。本文以非线性静态环节与线性动态环节连接的Hammerstein多变量非线性系统为研究对象,分别采用神经网络和描述函数处理非线性相对增益阵,解决Hammerstein非线性系统的
研究电机控制方法,提高转速控制精度,是提高钻井轨迹导向机器人系统导向控制精度的关键。提高系统的导向精度可以提高石油开采效率,降低开采成本,对我国的能源安全具有重要的战略意义。本文选择结构简单,控制精准的永磁同步电机作为系统动力设备,并选择转矩脉动较小的矢量控制策略作为其控制策略。本文对永磁同步电机的结构和矢量控制的原理进行介绍,并建立了永磁同步电机矢量控制的数学模型。由于矢量控制速度环和电流环使用
目前,国内控压钻井技术和装备与国外相比,无论是在装备研制,或是在控制性能及精度上仍然存在较大差距,而且在控制方法上多是采用传统PID控制算法,正在大力发展的先进控制方法在控压钻井控制方面应用还比较少。因此,本文基于西门子PCS7设计了一套控压钻井装备操作软件,设计了自动控制系统,可以对控压钻井的过程进行实时监控操作。基于控压钻井压力控制方法及井口回压调节的研究,对节流阀压力控制使用先进控制算法仿真
多视图数据通常定义为由不同表示组成的综合型表示数据。多视图数据处理过程中的两个关键因素分别是一致性特性和互补性特性,基于这两个特性使得多视图学习可以更全面地覆盖数据样本的所有特征。然而,大多数针对多视图数据的算法只能针对单视图进行处理并忽略了这两个特性。为了更加完善地利用多视图数据间的各种信息,衍生了许多新兴算法用于处理各个视图中的特征数据。多视图子空间学习方法通过对所有视图数据的多个子空间或隐空
PID控制算法容易实现、鲁棒性强,至今仍是一种应用最为广泛的控制算法。PID控制器在工业现场运行的时候,由于外界条件的改变或被控对象本身发生变动,都会使得过程控制发生变化,造成PID控制参数不再适用于当前被控对象,控制效果变差,需要重新整定PID控制参数。因此,本文研究了PID控制参数的在线自整定方法,使PID控制器具有自整定功能,在被控对象动态特性变化时,能够在线自动调整PID参数以适应新的工况
大数据处理与云的结合是一种必然。大数据处理需要强大的计算能力与存储空间,而云端资源的可动态调配正好满足了这一需求。云端的资源优势,可为大数据处理提供适宜的平台。然而,大数据与云结合的应用场景需要解决数据隐私保护的难题。开放的云环境不仅需要面对来自内外的安全威胁与挑战,半可信和诚实但好奇的云服务(honest-but-curious)更加剧了问题的难度。如何找到一种处理办法,既能够有效地保证大数据处
无线预取技术由于显著减少了内容请求延迟和网络拥塞而受到了广泛的关注。现有的预取方案,大多数方案都考虑了弱移动性、无规律性网络拓扑和随机漫游的场景,与轨道交通的应用场景并不一致。在本文中,我们研究了在C-RAN架构下的轨道交通场景中的预取问题。针对轨道交通场景中的线状拓扑网络、固定的移动特征、相对稳定的人员和有限计算力环境,以平均访问延迟最小化为目标,设计基于按路径逐基带单元(Base-Band U
随着油田进入开发的中后期,地质条件越来越复杂,油水井发生套管损坏的频率也越来越高,严重制约了油田的开发效益。因此,对套管的生产状态进行实时预报,有助于及时采取预防措施,对维持油田的正常生产具有重要的工程意义。套损问题影响因素多、机理复杂,而传统的套损预测方法多是面向地质、工程等静态数据建立力学模型,难以及时反映油水井生产环境的变化。因此,本文首先面向生产动态数据建模,对比了多个常用分类模型在套损预
导钻是油田勘探开发中成本最高、技术最密集的环节。现有的导钻方法主要为井下半闭环随钻导向作业。它包括地面分析决策和井下数据采集,通过实时数据双向传输、地面和井下作业相互配合来执行导钻动作从而控制井眼轨迹。然而这种方式对信号传输速度和传输效率依赖性较高,且井下环境复杂,在距离地面较远的深井、超深井,几乎难以实现有效的数据传输。另外,地面的分析决策环节涉及复杂人类专家分析和精细管理工作,人工成本较高。因