快速城市化背景下复杂面源污染负荷时空变化模拟

来源 :武汉大学 | 被引量 : 6次 | 上传用户:sck1028
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在点源污染得到较好控制后,面源成为影响水环境质量的又一主要来源。按污染物来源划分,面源可以分为农业面源和城市面源两种。随着我国城市化进程的加速,城乡交错带成为一个特殊过渡地带。在该地带内,农业面源和城市面源往往交错分布。相对于单一的农业面源或城市面源而言,这种城乡交错带的面源污染形式更为复杂。如果直接利用国内外现有的农业面源模型或城市面源模型估算这种特殊面源污染的负荷,会产生较大误差。如何构建新模型,解决城乡交错带面源污染负荷的估算这一难题,具有重要的理论意义和实用价值。为此,本文提出了“复杂面源污染”(Complex non-point source pollution)的概念,并构建了相应的估算模型。复杂面源污染,是指在农业用地和城镇建设用地类型交错分布的区域内,由农业径流和城市径流中的污染物共同导致的受纳水体的污染。本文利用农业面源模型、城市面源模型、城市化模型和邻域统计方法,耦合构建了新的复杂面源模型(CA-AUNPS),用于估算水体复杂面源污染负荷时空变化。在此基础上,以位于城乡交错带的武昌汤逊湖流域为例,运用该模型模拟和预测复杂面源污染负荷的时空变化;运用SOM模型、线性相关和多元回归模型分析复杂面源污染的主要影响因子;并有针对性地构建了复杂面源污染控制的最佳管理措施体系。全文主要研究内容和结论如下:(1)运用元胞自动机(CA模型)和土地利用程度变化模型模拟汤逊湖流域城市化进程。CA模型模拟结果表明:1991-2011年间,村镇城市建设用地由10.87%增长至38.84%,成为面积最大的地类,增加区域主要集中在流域东北部和南部;农用地先增后减在2001年其面积比例达到最大值50.43%,之后逐年减少,2011年减少至35.49%;同期,林地/绿地和水域面积急剧减少;2011-2030年间,随着城市化发展,村镇/城市建设用地面积比例将增长至58.13%,成为流域主导用地类型,农用地、林地/绿地和水域整体呈减少趋势。土地利用程度变化模型分析结果表明:1991-2030年间,汤逊湖流域土地利用程度综合指数Ⅰ呈增长趋势,流域土地利用程度越来越高;每隔10年的土地利用程度变化量ΔI均大于0,流域土地利用处于发展期;1991-2011年、2011-2030年两个时间段的土地利用程度变化率R1分别是22.43%和11.39%,未来20年流域城市化速度低于过去20年。(2)利用农业面源模型(污染物输出经验模型)、城市面源模型(L-THIA模型)和城市化模型(CA模型),构建用于模拟复杂面源污染负荷时空分布的CA-AUNPS模型。运用整体评价和局部评价相结合的方法分析CA-AUNPS模型构建合理性,并通过对比验证来分析模拟精度。结果表明:1991-2030年面源污染负荷权重设置精度δ值均大于0.8,精度较高;与传统方法对面源特征“非0即1”的划分相比,面源污染权重设置的取值在0-1之间连续分布,使各元胞的面源特征更符合实际情况;2020年流域面源污染TN、TP负荷的误差分别是5.65%和9.11%,误差值均小于10%,模拟结果满足精度要求。本文构建的CA-AUNPS模型能有效用于复杂面源污染负荷的时空变化模拟,很好地解决了城乡交错带面源污染负荷的估算问题。(3)运用CA-AUNPS模型模拟和预测了汤逊湖流域面源污染物TN、TP负荷的时空变化,结果表明:从空间分布看,1991-2030年TN、TP负荷高值区集中在流域北部和中南部的建设用地上,其分布范围随着建设用地的扩展从北向南扩张;次高值区主要分布在流域东南部和西部的农田上,分布范围随着农田分布范围的变化而变化;低值区主要分布在流域南部林地/绿地上,分布范围变化不大;整体而言,各土地利用类型按TN、TP单位负荷从大到小依次是村镇/城市建设用地>荒地/裸地>农用地>林地/绿地。从时间变化看,1991-2030年TN负荷先减后增、TP负荷整体呈增长趋势,至2030年,TN、TP负荷将增长至390.12t/a和39.40t/a。从TN、TP负荷空间分布的相关性看,TN和TP负荷空间分布具有一致性,空间相关系数按土地利用类型从大到小依次是荒地/裸地>林地/绿地>村镇/城市建设用地>农用地。从农业面源模式、城市而源模式和耦合模式下的模拟结果对比来看:整体而言,耦合模式下TN、TP负荷估算值分别大于农业面源模式和城市而源模式下的TN、TP负荷估算值;1991-2001年耦合模式下TN、TP负荷变化趋势与农业而源模式估算结果基本一致,2001-2030年耦合模式下TN、TP负荷估算值变化趋势与城市面源模式计算结果基本一致。从农业面源和城市面源分别对复杂面源的贡献来看,1991年农业面源对复杂面源TN、TP负荷的贡献率ω。分别是72.49%、65.63%,城市面源对复杂面源TN、TP负荷的贡献率ω。分别是27.51%、34.38%,农业而源贡献占优势;2030年TN、TP负荷的的ωa。仅为8.98%、10.50%,ωu。增长至91.02%、89.50%,城市面源贡献占绝对优势;随着城市化发展,农业面源贡献率逐年降低,城市面源贡献率逐年增加。耦合模型更真实地反映了汤逊湖流域复杂面源的实际特征。(4)运用SOM模型、线性相关和多元回归模型分析复杂而源污染的主要影响因子,结果表明:土地利用变化和年降雨量是影响TN、TP负荷量时间变化的主要因素,土地利用类型、坡度和NDVI是面源污染负荷空间分布主要影响因子;TN、TP负荷与土地利用程度综合指数和年降雨量在时间变化上均呈正相关;农用地和村镇/城市建设用地分别是影响TN和TP负荷的主要用地类型;TN、TP负荷与坡度在空间分布上呈正相关,其相关系数按不同土地利用类型从大到小依次是荒地/裸地>林地/绿地>农用地>村镇/城市建设用地;TN、TP负荷与NDVI在空间分布上呈负相关,其中,TN负荷与NDVI的相关系数按不同土地利用类型从大到小依次是林地/绿地>农用地>村镇/城市建设用地>荒地/裸地,TP负荷与NDVI相关系数从大到小依次是农用地>村镇/城市建设用地>林地/绿地>荒地/裸地。(5)基于3S技术和CA-AUNPS模型,针对性地构建了汤逊湖流域复杂面源污染控制BMPs体系。结果表明:在汤逊湖流域的5个BMPs控制子区中,位于流域西北部、东北部和中南部的3个子区是面源污染重点治理区域;通过实施包括宏观管理BMPs、源头控制BMPs、过程削减BMPs和末端治理BMPs等4个子体系的汤逊湖流域复杂面源污染控制BMPs体系的组合措施,可使流域TN、TP负荷综合去除率分别达48.30-97.96%、60.60-91.79%;在最不利条件下采取BMPs措施后,2020年TN、TP负荷分别是281.87t/a和22.22t/a,其削减量分别是88.19t/a和11.67t/a,2030年TN、TP负荷分别是298.18t/a和20.97t/a,其削减量分别是91.94t/a和18.43t/a。本文提出的复杂面源污染控制BMPs体系能有效用于汤逊湖流域面源污染控制。
其他文献
春捺钵遗址群位于吉林省乾安县的花敖泡东南岸和查干湖西南岸,由四片区即后鸣字区、腾字区、藏字区、地字区组成。4片遗址都位于湖泊的边缘,以断续分布的土包台为主要遗迹,每个
报纸
对 22 000m~3液化气船进行了整船和舱段三维有限元强度计算分析,建立了整船和船 体主舱段的三维有限元结构模型。并通过节点力的自动加载技术和惯性平衡处理技术建立有限元 模型的节点
没有一点点防备,大闸蟹就这么火了!数据显示,今年大闸蟹消费额增长了近5倍,年轻消费客群出现激增,业界预估未来将有1.5倍的潜客市场,
面对资源有限和生产原料价格高昂的挑战,国内钢铁企业针对脱氧合金化的自动配料模型研究亟需发展,借助信息技术建立自动配料模型实现资源利用最大化、生产成本最小化对于钢铁企
记者从重庆市人大常委会办公厅获悉,《重庆市村镇供水条例》(以下简称条例)已在重庆市四届人大常委会第二十九次会议上表决通过,将于2017年5月1日起施行。该条例共七章五十七条
果品的低温保鲜在果品运输贮藏过程中十分重要,对果品的口感和价值有着重要的影响。因此,制备一种用于果品运输贮藏的低温相变储能材料具有重要意义。本文根据相变储能材料的
1月25日至27日,集团公司2018年工作会议在河北廊坊召开。1月25日上午,集团公司党组书记、董事长王宜林做了《深入贯彻落实党的十九大精神,奋力开创新时代中国石油稳健发展新
<正> 蜂房又名蜂窝,甘平有毒,入肝胃肾经,具有祛风解毒,疗疮杀虫,消肿定痛之功。《本经》谓本品“主治惊痫瘈疭,寒热邪气,癫疾鬼精,盅毒肠痔……”《别录》谓其“疗风毒毒肿
期刊
电力系统中各种不确定性因素为安全风险评估工作带来困难,随机潮流计算可以计及这些不确定性因素。提出一种基于快速随机潮流的电力系统安全风险评估方法,通过考虑风电时序特