论文部分内容阅读
随着近年来物联网与信息传感技术的快速发展,以及我国乡村振兴战略正式提出的发展背景,现代设施农业迎来了新一轮发展浪潮。截止于2018年末,我国温室大棚占地面积为196.37万公顷,占全球80%以上,位居世界第一。总产量虽高,但由于智能化程度不高、管理不便、成本高,致使我国大棚亩产量仅为发达国家的1/8,总体生产效益低。国外温室大棚测控系统由于起步较早,自动化程度较高,但设备系统庞大、直接引进成本高,不适以我国温室种植业现下发展环境。国内近年来有人提出了诸多解决方案,但存在环境感知精度不高、通信距离不足、功耗过高、缺乏智能化控制等问题,都制约着温室大棚的普及性。基于现代物联网技术和设施农业发展背景,针对当前智能温室大棚环境监测系统存在的问题。从弥补不足出发,对温室大棚监测系统进行了优化设计。摒弃了农业领域应用较为广泛的WIFI、GPRS等传统无线通讯技术、亦或单一的WSN(Zig Bee)通信技术。整合NB-Io T蜂窝网络通信与Zig Bee近场通讯技术,设计了现场监测终端与远程云监控平台。本文研究内容主要如下:(1)系统通信方面,提出一种NB-Io T和Zig Bee双协议融合组网技术,结合环形缓冲队列算法组建低功耗广域无线网络。相对于传统wifi、blue、lora等物联网技术,通信覆盖范围更广、功率更低、操作较为便捷,具有优异的鲁棒性。(2)远程监测平台方面,摒弃现阶段较为普遍的C/S结构,接入B/S云监测管理平台。设计使用AJAX异步请求局部刷新技术,Web可对环境监测因子实时动态刷新显示。用户可随时远程查看并管理数据,设置报警阈值等操作。提升了平台实用性与操作舒适性,降低了操作门槛和后期维护成本,便于使用推广。(3)智能控制方面,根据温室大棚环境因子实际变化特点,引入模糊PID控制算法,通过对喷淋灌溉、温度调控等设备进行调节,实现系统闭环反馈控制。给予温棚内作物最佳生长条件,有利于作物的高效生长。(4)电源方面,设计太阳能与电池双电源供电,利用三极管和MOS管的开关特性,实现太阳能供电的同时给电池充电,并且在太阳能断电时与电池进行无缝电源自动切换。保证系统电源供电稳定的情况下,节省了能耗。系统设计完成后,经原型系统测试与重庆市万州区甘宁镇同鑫农业园实地部署运行,在保证系统多节点部署、多参数检测、低功耗工作、广覆盖通信的条件下,仍实现了优良的通信要求,满足系统需求。试验结果证明了现代物联网技术应用于温室大棚环境监控系统的可靠性,为农业大数据建立数据采集和远程通信提供应用基础。设计优化了系统部署,提出了现代农业通信中NB-Io T与Zig Bee相结合以实现高稳定、低功耗、广覆盖的通信方式,克服了现阶段温棚环境监测系统存在的部分弊端。系统获取数据便捷、命令响应及时、通信稳定可靠,可在农业监控等更广阔领域提供技术支持与参考。