论文部分内容阅读
有机化合物的空气/颗粒物分配系数(Kp)能表征有机化合物在大气中的分配和环境归趋,Kp的大小受到其正辛醇/空气分配系数(KOA)的显著影响。KOA本身也是非常重要的理化性质参数,可以评价有机化合物在空气和多种环境有机相之间的分配,是进行生态风险评价的基础数据。实验测定Kp和KOA会消耗大量的人力物力,受到标准样品缺乏的限制并滞后于有机化合物的合成和使用,因此有必要发展这两种参数的理论预测模型。首先以18种正构烷烃、21种多氯联苯(PCBs)、16种二噁英(PCDD/Fs)和13种多环芳烃(PAHs)为研究对象,应用半经验分子轨道PM3算法计算了这些化合物的16种理论分子描述符,分别采用偏最小二乘法(PLS)和支持向量机(SVM)进行回归分析,建立Kp的定量结构-活性关系(QSAR)模型,并以PCDD/Fs为例,建立Kp的温度依附性模型。所建立的模型具有较好的准确性和稳健性,误差随机分布,可用于应用域内化合物的logKp值的预测。分子间色散力、电荷转移作用和分子位阻效应是影响化合物在空气相和颗粒物相间分配的主导因素,并且分子位阻对化合物在颗粒相中的分配起阻碍作用。PCDD/Fs的温度依附模型结果表明环境温度确实是影响有机化合物在两相之间分配的重要因素,温度在模型中以T2的形式表现出来。PLS和SVM两种方法的模型结果对比表明,SVM方法能够更充分地提取化合物分子结构参数与其Kp值之间的信息,使得模型拟合和预测效果提高,也表明影响化合物分子在空气和颗粒物两相间分配的分子结构因素与Kp之间可能存在某些非线性关系。应用OMNISOL SM5.0模型计算246个有机化合物在正辛醇溶剂中的溶解自由能,并根据热力学平衡方程计算这些化合物的logKOA值。计算值与实验值之间存在较好的相关性。受到计算软件发展的限制,能量计算本身存在一定误差,影响KOA的计算准确性,但是在可以接受的计算精确度的前提下这种不准确性可以通过相应的线性关系进行校正。因此可以采用该方法计算有机化合物的KOA以及更多的平衡分配系数。