耦合振子奇异态研究

来源 :华东师范大学 | 被引量 : 0次 | 上传用户:guizi663
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前网络上耦合振子模型的集体行为已经被研究了许多年,特别是对于同步化的研究工作,这在生物学、神经科学等有着很广泛的应用前景。其中一个比较著名的模型就是Kuramoto相振子模型。最近几年来,有几个研究小组发现了在全同Kuramoto相振子系统中出现了一种“奇异态(Chimera state)”的集体行为,即在系统中有一部分振子处于同步化状态而同时另一部分振子则处于去同步化状态。这种集体行为被Abrams等人称为奇异态。来自于许多生物每次睡眠时都只有半个大脑处于睡眠状态的现象[1]。在海豚和其他某些海洋哺乳动物中首次发现只有半个大脑睡眠的例子,并相继在鸟类和蜥蜴中也发现了这种现象[2]。在实验上通过记录生物大脑的脑电波发现,醒着的那一半大脑表现出了去同步电活动,对应于数以百万计的神经元不协调的振动,而休眠的那部分则处于高度同步化状态。这在生物学上被称为半脑睡眠。目前有很多专家学者都在研究这种现象[53][54][55]。Abrams等人从物理学的角度出发构造了一个最简单的Kuramoto相振子模型试图以奇异态来解释这种现象[3]。本文就是在Abrams等人的基础之上从耦合振子间的时间延迟和集团大小的非对称性来讨论系统的集体行为,并提出了一个新的模型来解释海洋生物中的交替奇异态现象。   首先,由于考虑到神经元信号传输速度的有限性,导致信号在神经元之间传递时需要一定的时间,因而神经元之间的相互耦合作用是不同时的,存在一个时间延迟,所以在Abrams等人的系统中我们引入了时间延迟,考察在引入时间延迟后对系统三种典型的奇异态行为的影响。我们发现固定的时间延迟会引起系统行为的相变,而系统的奇异态对于随机分布的时间延迟则具有鲁棒性。   其次,在Abrams等人的系统中我们考虑子集团大小的非对称性所带来的对系统行为的影响。因为在原来的Abrams等人的系统中,两个子集团是相同大小的,并且第一个子集团始终处于同步化的状态,那么我们就改变第一个子集团的大小,来观察系统行为的变化。我们发现系统的奇异态对于集团大小的非对称性也具有鲁棒性。   第三,在某些海洋哺乳动物中,它们大脑的实际睡眠方式是一边半脑工作一边半脑睡眠,然后再轮换过来。这一边睡眠另一边处于工作状态,两个半脑总是处于这种交替睡眠的状态。因而,我们建立一个模型试图去了解这种现象的机制和解释这种奇异的生物现象,以增强我们对于这些生物现象的认识和理解。   通过以上的研究,我们发现了Abrams等人的系统对于时间延迟和集团大小的非对称具有鲁棒性。提出了我们自己的新的模型去解释海洋生物中的交替奇异态行为。发现系统的交替奇异态行为对系统的一些参数以及外界信号都具有鲁棒性。
其他文献
本文通过对荣华二采区10
钢结构梁柱节点是钢结构建筑中的关键组成部分,在保持钢结构完整性和稳定性方面发挥至关重要的作用。梁柱全焊接节点是现有钢结构建筑中应用非常广泛的节点形式之一,研究全焊接
本文通过对荣华二采区10
本文通过对荣华二采区10
《烽煙图》选页
期刊
很不幸,读着法拉奇长大的我可以说是在最好的年华进入了一个行将衰败的行业,抑或是一个正在被资本的力量逐步瓦解的纸媒旧体系。我曾尝试这样描述我的入行,就像一个好奇的小
向日葵俗名又叫葵花子,颈部直立、粗大健壮,圆柱形多棱角,披着白色粗大的硬毛,比较喜欢温暖、始终向着太阳、极耐旱。原产于北美洲,世界各地均有栽培。向日葵是一种向着阳光
经典光学(Fourier光学)的一个重要组成部分是Fresnel衍射(Fresnel变换)及关于衍射的Collins公式。我国学者范洪义等人首先用相干态表象研究了Fresnel衍射的量子对应,利用有序
随着物联网和云计算的发展,广泛存在于工业控制的分布式串口设备的网络化和智能化组网成为一种趋势,于是对分布式串口设备实现网络化、智能化控制逐渐成为人们研究的热点。 
目前,金融危机对我国经济的影响已经比较显著:我国经济增长放缓,整个社会的就业压力增加;我国的用电量、发电量减少;港口吞吐量下降;出口订单工业产值明显下降等。此外,我国