边界耦合热方程组不同时淬火现象的数值模拟

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:wangke777
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
带有初边值问题的抛物型方程或方程组的淬火理论方面的研究已经取得很多成果,但对其淬火现象的数值模拟还做的为数不多,特别是在方程组淬火现象的数值模拟方面。 本文模仿单个方程淬火现象的数值模拟的思想,对边界耦合热方程组的不同时淬火现象进行数值模拟。通过估计淬火时刻淬火元作为空间变量x的函数在x=1附近的近似函数,对求解区域建立相应的非均匀网格。再利用抛物型方程的差分形式以及对边值问题处理方面的知识,在已经得到的不均分网格节点上建立差分方程组,并利用Thomas算法和Newton法求解。最后对应用估计得出的非均匀网格的模型与应用均分网格、以及选取的另一种不均分网格的模型的计算结果做出对比。
其他文献
目前,稀疏优化算法近来是学术界研究的热点之一,被广泛应用于自然图像处理、信号压缩感知、计算机视觉和医学影响处理领域。与此同时,稀疏编码与正则化的方法在医学影像分析
定义在字符表{1,1}上的无穷序列是数学中古老而有趣的研究对象.本文研究的是其中被称为“算术分形”的一类pattern序列,主要讨论了这类序列的关联测度(correlation measure)
本文从证券市场行业板块的角度对我国电子信息行业上市公司进行深入研究分析,针对板块建立了财务危机预警模型及危机程度预测模型,并利用聚类分析法及主成分分析法对板块中的正
量子偶是一类非常重要的Hopf代数,它由Drinfeld在研究量子Yang-Baxter方程的解时提出,所以又称为Drinfeld偶。它的研究不仅极大的推动了Hopf代数自身理论的发展,而且在理论物
随着科学技术的发展,许多工程问题的数学模型都可以表成积分方程形式,例如:流体力学,弹性力学,生物学以及人口问题等等,所以,研究积分方程是很有意义的。积分方程的研究为一些实际问
学位