【摘 要】
:
在电子封装中,Sn基钎料与Cu焊盘发生钎焊界面反应,生成金属间化合物(Intermetallic Compound,IMC),进而形成微互连焊点。为了满足电子器件微型化和集成化的发展需求,微互连焊点尺寸逐渐减小,这将会使界面IMC所占比例增大。而Cu-Sn型IMC是脆性相,过厚的IMC层会降低微焊点的力学性能和可靠性,因此需要对IMC的生长进行有效控制。由于形成微焊点的钎焊回流过程中发生液-固界面
论文部分内容阅读
在电子封装中,Sn基钎料与Cu焊盘发生钎焊界面反应,生成金属间化合物(Intermetallic Compound,IMC),进而形成微互连焊点。为了满足电子器件微型化和集成化的发展需求,微互连焊点尺寸逐渐减小,这将会使界面IMC所占比例增大。而Cu-Sn型IMC是脆性相,过厚的IMC层会降低微焊点的力学性能和可靠性,因此需要对IMC的生长进行有效控制。由于形成微焊点的钎焊回流过程中发生液-固界面反应,金属原子在液态钎料中扩散速率更快,并且回流过程中微焊点内部易产生温度梯度,使金属原子定向迁移,这都会显著影响IMC的生长行为。研究表明,向Cu基板中添加Zn元素会抑制IMC的生长。本文研究了Cu/Sn/Cu-xZn(x=0,5,10,20)微焊点在260 ℃下等温回流和200 ℃/cm温度梯度下回流不同时间的液-固界面反应行为,主要结论如下:(1)在260 ℃浸焊15s后,Cu/Sn/Cu-xZn微焊点两侧界面均只形成一层扇贝状IMC。其中,Cu/Sn/Cu微焊点界面处IMC为Cu6Sn5;Cu/Sn/Cu-xZn(x=5,10,20)微焊点界面处IMC为Cu6(Sn,Zn)5,这是由于Cu-Zn基体中的Zn原子被溶解到液态钎料中,并参与界面反应而占据了Cu6Sn5中部分Sn原子的亚晶格位置。(2)在260 ℃下等温回流时,同一成分Cu/Sn/Cu-xZn微焊点两侧界面IMC呈对称性生长,即两侧界面IMC厚度基本相等,形貌大致相同。随着微焊点中Zn含量的增加,两端界面IMC厚度略有减小,表明在Cu基体中添加Zn对等温回流时界面IMC生长的抑制作用不明显。这是由于在回流温度下Cu6(Sn,Zn)5中具有较大的Zn溶解度,使得微焊点界面上无法形成有效的富Zn相作为Cu、Zn原子的扩散阻挡层。(3)在200 ℃/cm温度梯度下回流时,Cu/Sn/Cu-xZn微焊点冷、热两端界面IMC表现出明显的非对称性生长现象,即冷端界面IMC快速生长,热端界面IMC缓慢生长,同时热端基体被大量溶解;且含Zn微焊点冷端界面IMC厚度减小,表明添加Zn对冷端界面IMC生长有显著抑制作用。这是因为添加Zn降低了金属基体的溶解,进而减少了由热迁移引起的从热端扩散到冷端并用于冷端界面反应的原子通量。此外发现,由于Cu/Sn/Cu-20Zn微焊点热端界面处生成Cu(Sn,Zn)层,更加有效地阻挡了热端基体溶解,使得微焊点冷端界面IMC生长速率急剧减小。(4)基于界面IMC随回流时间的生长规律,分别获得了等温回流和温度梯度下回流时Cu/Sn/Cu-xZn微焊点两侧IMC的生长动力学。
其他文献
我国的镁储量十分丰富,镁矿产量在占全世界的80%以上。但传统的镁合金研发方式通常采用“经验试错法”,这大大阻碍了镁合金及其结构件的从研发到应用的速度,因此迫切的需要一个高效率的的研发模式来推动我国镁产业的升级转型。随着信息技术的快速发展,将计算机技术应用于镁合金及其结构件的研发和生产中,可以大大提高其研发生产效率。基于美国于2008年提出的集成计算材料工程(Integrated Computati
解决相对贫困问题是我国反贫困战略的重心。我国相对贫困有“群体大、维度广、界定难、缓解慢”的特点,基于国内外关于相对贫困的特征识别和测度方法,选取2018年我国10个省份数据,利用解释结构模型中的层次划分以及偏序关系的应用,立足于经济维度、社会维度和生态维度建立评价体系,解决我国相对贫困识别困难的问题,结合有向哈斯图的分析结果,提出有效缓解我国相对贫困问题对策。
随着个人电子产品的迅速发展,人们越来越重视产品的外观和质量,这就对生产产品的精密模具提出了更高的要求,因此加工模具的铜电极需要具有极高的精度和表面质量,并且边缘毛刺尺寸需要控制在5微米之内。而铜作为一种典型的塑性材料,在加工过程中极易产生毛刺,铜电极的毛刺会直接影响模具的质量,进而影响所加工产品的质量,造成产品的外观不良甚至是有缺陷。由于精密模具铜电极的尺寸较小且特征复杂,在现有的技术下,这些毛刺
蒙乃尔合金是以镍元素为基的镍铜合金,典型成分为70%镍和30%铜,是一类重要的镍基耐蚀合金。在传统蒙乃尔合金成分基础上引入硅元素即为含硅蒙乃尔合金,硅元素的加入可以起到提升合金的综合力学性能及耐磨性能的作用。本研究旨在对含硅蒙乃尔合金中第二相颗粒对合金力学及耐磨性能产生的影响进行系统研究,同时揭示含硅蒙乃尔合金磨损机制。在目前的研究工作中,通过非真空中频感应熔炼的方式制备出不同硅含量的蒙乃尔合金铸
Fe基块体非晶合金不仅具有高强度、高硬度、良好的耐蚀性,还显示出低矫顽力(Hc)、低铁损、高磁导率等优异的软磁性能,其中Fe基非晶带材已被应用于变压器、互感器、电抗器等电力电子设备与器件。Fe基非晶合金主要是由Fe和类金属元素组成,为了提高合金的玻璃形成能力(GFA),通常在合金中加入Al、Ga、Nb、Mo、Y等非晶形成元素,然而这些元素会降低合金的饱和磁感应强度(Bs)。相似元素添加能有效提高合
Cu-Ni-Sn合金作为环保型导电弹性铜合金,其强度较高,且具有良好的导电性能,高温稳定性,抗应力松弛性能及耐腐蚀性能,其中Cu-15Ni-8Sn合金的强度可以高达1300Mpa(与Cu-Be合金相当),广泛用于各种电子弹性元件中。但Cu-Ni-Sn合金在铸造过程中存在Sn偏析及后续的时效过程中容易产生不连续析出相等问题,严重影响合金的强度与加工性能。为了解决以上问题,以Co元素作为第四组元设计了
Co基非晶合金具有高磁导率、低矫顽力(Hc)、低铁损和磁致伸缩系数等特性,尤其是其高频软磁特性极佳,在电子产业和通信技术领域具有越来越重要的应用价值。但软磁性Co基合金的非晶形成能力(GFA)相对不高,而限制了其应用范围。利用非晶合金在其过冷液相区(ΔTx)的超塑性,不仅可以制备大尺寸的块体非晶,还可以批量化生产微型磁元器件,而适用于超塑性成形加工的非晶合金需要具有较宽的ΔTx和较高的GFA。但目
非晶合金因其独特的长程无序短程有序的结构而具有优异的力学、物理和化学性能。迄今已发展出了上千种非晶合金,它们主要是以Pd、Mg、La、Zr、Cu等金属元素为基的金属基合金,而以非金属元素为基的非晶合金极少,仅有Si和Ge基非晶合金的报道。这两种非金属基合金的强度、硬度和热稳定性都明显高于相同合金系的Al基非晶合金;它们还具有远高于其它非晶合金、接近半导体的极高电阻值。但Si基非晶合金的结构稳定性差
随着电子信息技术的快速发展,电子设备的信号处理日趋高速化,达到兆赫兹(MHz)频率范围,这对吸波材料提出了更大的挑战。提升吸收剂吸波性能的关键是提高阻抗匹配和能量衰减。而在兆赫兹频率范围内材料的磁导率通常远远小于介电常数,因此要求提高材料的磁导率来改善阻抗匹配和提高能量衰减。本文采用机械合金化方法成功制备了系列FeCoNiCr Cu高熵合金粉末,通过改变Cr和Cu元素摩尔比以及改进合金制备工艺,调
航空发动机的发展水平决定着飞机的使用性能,目前已经成为衡量一个国家科技水平和综合国力的重要指标之一。涡轮盘作为航空发动机的核心热端部件,工作条件极为恶劣,失效形式十分复杂,直接决定着航空发动机能否安全服役。因此要求涡轮盘材料在其使用温度范围内要有尽可能高的疲劳、持久性能以及良好的抗蠕变能力。以FGH4096合金为代表的粉末高温合金,解决了涡轮盘高合金化造成的凝固偏析和变形困难的问题,显著提高了涡轮