论文部分内容阅读
原子钟可以提供精确的时钟信息,传统的原子钟体积、重量、以及功耗较大,因为其微波谐振腔的存在,限制了原子钟小型化的发展,而芯片级CPT原子钟因为其小体积、低功耗、可微型化等优点,近年来越来越受到国内外的重视,在军事国防、通信、无人机、GPS导航以及微小卫星等领域仍然存在大体积和高功耗的问题,为解决此类需求,基于CPT原理的芯片级原子钟具有良好的发展前景。国外CPT原子钟起步较早技术较为领先,已有成熟产品问世,国内CPT原子钟研究发展较晚,国内尚无成熟产品问世,因此亟待在CPT原子钟研究上取得突破。CPT原子钟包括物理系统和电路系统两部分组成,电路系统是其中重要的组成部分,本文旨在研究电路系统中伺服环路的关键部分射频模块,射频模块采用锁相环频率合成技术具有低相噪低杂散的优点,设计产生3.417GHz射频信号,采用性能良好的温度补偿压控晶振,三阶无源环路滤波器,锁相环芯片ADF4351内置低相噪压控振荡器(V CO),利用STM32单片机对锁相环芯片进行配置以及实现输出频率的键控,在OLED上的实时显示,输出信号相位噪声优于-65dBc/Hz@100Hz,杂散抑制大于50dBc,并将所设计的射频模块与原子钟光学平台上VCSEL激光器相连接,采用半宽调制测试铷原子多普勒吸收峰,通过在不同温度下调节微波信号的功率找到其最佳工作点,为后续CPT信号测试以及频率锁定奠定基础。