论文部分内容阅读
光与原子相互作用系统是一种易操控的基本量子物理系统,它被广泛地应用在量子力学基本问题、量子器件、量子信息处理及基本物理量的精密测量研究中。量子相干作为量子力学的基本问题之一,由其衍生的电磁感应透明、真空感应透明、光学双稳、光开关、光速减慢及光存储等物理现象,对于量子信息和量子计算的发展具有重要的意义,同时也是原子分子光物理领域人们研究的热点问题。电磁感应透明是一束弱的探测场和一束强的泵浦行波场作用在介质上,由于量子相干效应导致介质在相干光场的作用下,在共振位置附近呈现的透明现象。当用驻波场代替行波场时,在电磁感应透明的机制下,介质的吸收和色散被周期性的调制,形成电磁诱导光栅。这种光栅不仅具有传统光栅的光学性质,而且可以实现光学调节及动态重构等功能,可以应用于量子模拟、量子物理及非哈密顿物理等研究中。本文的工作主要集中在铷原子电磁诱导光栅的特性研究及其应用,具体研究内容如下:1、利用密度矩阵理论,构建了三能级原子系统的电磁诱导光栅,获得了吸收和色散的解析表达式。系统研究了幅度光栅、相位光栅和混合光栅等不同类型光栅的形成机制。2、在铷原子阶梯型三能级系统中,实验上实现了电磁诱导光栅,获得了清晰的分离衍射图像。通过优化探测光及耦合光功率、耦合光夹角、双光子失谐和原子温度等实验参数,一级衍射效率达到25%。3、实验上在近场实现了电磁诱导泰伯效应,观察到完整的整数泰伯效应和清晰的分数泰伯效应,实验结果和理论模拟结果吻合很好,该结果对于多参数可调谐的非材料光栅研究具有重要意义。