【摘 要】
:
在数学生态学中,一个生态系统共存态的存在性及各种群的长时间行为是种群动态模型研究的主要内容.近年来,随着对种群动态模型研究的深入,同时考虑了扩散、自扩散和交错扩散作用的强耦合反应扩散方程组受到越来越多的关注.在这篇博士学位论文中,我们主要考虑种群动力学中的一类具有代表性的强耦合非线性反应扩散系统,通过对此类系统解的整体性态以及非常数稳态解存在性的研究,得到了一系列新的结果.整篇论文由五章组成.第一
论文部分内容阅读
在数学生态学中,一个生态系统共存态的存在性及各种群的长时间行为是种群动态模型研究的主要内容.近年来,随着对种群动态模型研究的深入,同时考虑了扩散、自扩散和交错扩散作用的强耦合反应扩散方程组受到越来越多的关注.在这篇博士学位论文中,我们主要考虑种群动力学中的一类具有代表性的强耦合非线性反应扩散系统,通过对此类系统解的整体性态以及非常数稳态解存在性的研究,得到了一系列新的结果.整篇论文由五章组成.第一章,介绍数学生态学及种群动态模型的背景、发展、研究进展及现状,给出本文所要讨论的主要问题和研究思想.第二章,给出文中要用到的一些重要引理、命题等辅助知识.第三章,讨论一类带非线性耗散的强耦合反应扩散系统的整体解.这类系统是同时考虑了扩散、自扩散和交错扩散作用的n种群SKT模型.以H.Amann建立的非负解的局部存在性为基础,采用PDE中标准的能量估计方法,结合恰当的Gagliardo-Nirenberg型插值不等式,我们在扩散矩阵和竞争矩阵正定的条件下得到该类系统解的整体存在性和一致有界性,并进一步由Lyapunov函数法得出非常数正平衡态的不存在性.第四章,主要考虑三种群强耦合HP食物链模型.在零流边界条件下,运用Leray-Schauder度理论,得到这个强耦合系统的非常数正稳态解的存在性.同时,由种群动力学中的一些基本概念及方法,讨论该模型的常数正平衡点的稳定性.结果表明,对于强耦合情形,当第二个种群的扩散或自扩散作用较强时,系统不存在非常数正平衡态,而当第二个种群相对于第一个种群或第三个种群相对于第二个种群的交错扩散足够大时,系统至少存在一个非常数正稳态解.在弱耦合情形,当第三个种群的扩散充分大时会出现非常数正平衡态.因此,较强的扩散或交错扩散对系统生成稳态模式(stationary patterns)起着促进作用.第五章,运用Rabinowitz局部和全局分歧定理,研究零边界条件下强耦合竞争-竞争-互惠模型的平衡态问题正解的大范围分歧.以第一个种群的内禀增长率作为分歧参数,根据Rabinowitz局部分歧定理得到了平衡态系统在第一个分量为0的半平凡平衡解支上的分歧解.进一步,由Rabinowitz正解的大范围分歧定理可知这个分歧解是全局存在的.因此当三个种群的内禀增长率适当大,并且某个相关的带非线性扩散项的特征值问题的第一特征值为0且为奇代数重数时,这三个种群至少有一个共存态.
其他文献
随机比较理论在应用概率、统计、可靠性理论、精算科学等领域是一个重要分支,随机序在其中扮演着极其重要的角色.广义次序统计量是序贯次序统计量的一个子类,包含了许多概率统计中常用的有序变量的模型,例如,通常次序统计量、记录值、k-记录值、Pfeifer记录值、累进Ⅱ型删失次序统计量、多维不完全修理次序统计量,等等.本文致力于研究实验总时间(ttt)序和其对偶序(dttt)的更深入的性质,以及来自一样本和
测度链上动力方程理论不但可以统一微分方程和差分方程,更好地洞察二者之间的本质差异,而且还可以更精确地描述那些有时随时间连续出现而有时又离散发生的现象.在探讨测度链上的动力方程的动力学行为时人们所熟悉的基本工具诸如Fermat定理,Rolle定理以及介值定理等不再成立,同时很难找到适应不同测度链的模拟程序,这些在给测度链理论研究带来诸多困难的同时,也更引起了广大学者的兴趣.本文首先考虑了测度链上一阶
双光子激光共聚焦荧光显微镜(Two-photon laser scanning fluorescencemicroscopy,TPM)因其具有独特的优势而被广泛应用于生命科学及医学领域。然而由于缺乏真正意义的双光子荧光探针,使双光子荧光显微镜的应用受到了很大程度上的限制。利用双光子荧光显微镜,长时间高空间分辨地活体观测核酸的生命活动是非常有意义的工作,然而目前尚无同时满足优良双光子特性和活体染色要
这篇博士论文着重研究了在吸收集不具有紧性的条件下,Banach空间上指数吸引子的存在性问题.并讨论了含任意p次多项式增长的非线性反应扩散方程指数吸引子的存在性.设{Sn}n=1∞为定义在Banach空间X上的离散半群,(?)为其吸引子.假设S在集合B∈0((?))上是C1的,并且S在集合B∈0((?))上任意一点的线性化算子可以分解为紧算子K与压缩算子C(||C||<λ<1)之和,即L=K+C.则
结构活性/性质关系方法(Structure Activity-Property Relationship,SAR/SPR)是目前国际上一个相当活跃的研究领域,近些年人们对该领域研究的投入呈现逐年递增的趋势。SAR/SPR方法的研究对象主要包含物质各种各样的物理化学性质参数,生物活性,毒性,以及药物的生物利用度等等,研究领域涉及化学、生物学、药学以及环境化学等诸多学科。该方法主要是从化合物的分子结构
在本博士论文中,首先我们在无界区域上考察了下面非自治反应扩散方程解的渐近行为这里(?)是一个N×N的实矩阵,并且具有正的对称项(?)(a + a*)≥βI,β> 0, a*表示a的转置,u = u(x,t) = (u1,...,uN),g=g(x,t)=(g1,...,gN),f=f(u,t)=(f1,...fN)..我们假定外力项g = g(x, t)∈Lb2(R; H),非线性项f = f(u
在这篇论文中,通过运用无穷维动力系统关于吸引子理论的最新研究成果并且结合一些能量估计技巧,我们研究了两类方程:具有衰退记忆的非经典扩散方程和具有衰退记忆的半线性热方程.我们对其弱解和强解的长时间动力学行为进行了深入的讨论,并且证明了以上方程对应动力系统的全局吸引子或一致吸引子的存在性.首先,我们研究了在自治外力项作用下具有衰退记忆的非经典扩散方程ut—△ut—△u—∫0∞k(s)△u(t—s)ds
众所周知,对于多个非奇异矩阵乘积的逆有如下的反序律成立:然而,当矩阵乘积A1A2…Am奇异时(此时,矩阵Ai可为奇异矩阵或长方形矩阵),这种所谓的反序律对于广义逆就不一定成立了.如何给出广义逆反序律成立的充要条件是矩阵广义逆理论中一个重要而又有趣的问题.假设Ai∈Cli×li+1,i=1,…,m为任意的m个复矩阵.本文利用广义Schur补的极大极小秩这一途径研究矩阵广义逆如下反序律成立的充要条件,
高等植物中,胚胎的发育关系到种子的形成,而种子的萌发又关系到物种的延续,这两个发育过程都起到至关重要的作用。拟南芥作为一种模式植物,是研究胚胎发育和种子萌发的理想材料。我们的研究采用分析拟南芥突变体表型的方法,将拟南芥肌动蛋白相关蛋白ARP6定位到这两个发育过程中。拟南芥的胚胎发育是一个复杂的基因调控过程,到目前为止,已经发现了不下于200个基因在胚胎发育过程中起作用。胚胎极性的建立,细胞分裂,母
本文主要研究了图的自同态幺半群的性质和结构,全文共分七章.第三章研究了路的补图的自同态幺半群,证明了路的补图的自同态幺半群是一个纯整半群,同时,解决了自同态幺半群的一些有关计数问题.特别地,确定了路的补图的自同态谱和自同态型.第四章研究了分裂图的联图的自同态幺半群,给出了此类图是自同态正则和自同态纯整图的充分必要条件,并且证明了分裂图的联图的自同态幺半群不可能是逆半群;同时,刻画了分裂图的联图的半