论文部分内容阅读
近几年随着中国物流行业在所有新型产业中的不断发展,物流运输的方式也在不断更新。其中,汽车物流在所有物流运输企业中有重要的作用,同时推动的物流行业的发展。在汽车物流行业中,以重型卡车为主要交通运输的方式,由于近些年,道路运输事故频发,重型卡车的道路运输安全预警监测问题也成为国家关注的重要问题。针对以上要求,在“阜阳重型卡车安全监测”的项目基础上,论文在对重卡道路的安全预警问题上提出了相应算法并对重型卡车道路运输危险预警系统进行实现与设计,通过数据挖掘以及相关计算机技术实现了车辆物流的信息化操作,提高了汽车物流的安全运输水平。针对目前重型卡车道路运输危险预警系统的数据分析与预测等问题,在系统中使用数据挖掘技术,在数据挖掘流程的步骤下,通过使用关联规则中的Apriori算法,可以针对在重卡道路运输危险预警中出现的相关条件,计算出影响重型卡车运输产生危险情况的条件之间的关联度,在得到影响重型卡车道路运输危险的关联条件后,通过对数据进行预处理操作,后使用BP神经网络的自主学习,通过BP神经网络,将其的输出结果为后面在使用D-S证据理论对重型卡车道路运输危险预警数据进行验证时,可以当做其基本分配函数(BPA),随后根据证据理论的合成规则对重型卡车道路运输中已经处理过的数据进行融合分析,最终根据其合成结果是否为1来判断BP神经网络的对重型卡车道路运输预测的准确性,进而降低重型卡车在道路行驶过程中所产生危险的风险性,保障驾驶员的生命和财产安全。通过结合重型卡车道路运输危险预警的具体特点和实际要求,对重型卡车道路运输危险预警系统的需求功能性方面分别进行两个方面的阐述,通过对重型卡车道路预警分析,得出在该系统中的框架的整体性[2],同时在采用基于J2EE的编程语言在B/S的开发模式和SSM的框架基础下,编写出页面原型,设计出系统的静态页面,根据重型卡车道路运输危险预警系统的需求,在此基础上,通过设计出该系统的(truk-monitoring)数据库以及基于重型卡车的车胎温度表、车胎压力表等相关数据表的设计,实现了胎温监测分析、胎压监测分析、轴温监测分析以及综合数据分析等功能。图29表24参51。