论文部分内容阅读
心血管疾病严重威胁着人类健康,为了解决心血管疾病,有关研究者们对血管移植物开展了大量的研究,但小直径(内径<6mm)血管移植物不能实现理想的通畅性,这主要是由于移植后血栓形成、内膜增生。丝素蛋白(SF)具有优良的生物相容性和良好的物理化学性能,而降钙素基因相关肽可以促进内皮细胞生长并抑制平滑肌细胞增殖,因此,降钙素基因相关肽改性的丝素蛋白材料用于小直径人工血管研究,将有利于促进内皮化和抑制内膜增生,阻止血栓形成,有望实现小直径人工血管的临床应用。本文通过己二酸与丝素蛋白共混并使用乙醇固化处理和1-(3-二甲氨基丙基)-3-乙基碳二亚胺(EDC)交联两种方法来制备丝素蛋白膜,然后利用静电吸附作用加载降钙素基因相关肽。探究了己二酸(AA)修饰的丝素蛋白(SF)材料对加载降钙素基因相关肽的影响,希望不采用化学反应的原理将降钙素基因相关肽较稳定的加载于丝素蛋白材料中。乙醇固化的SF/AA共混膜具有良好的热水稳定性。质量比SF:AA=100:1.5时,样品的蛋白溶失率达到最小并稳定。随着SF:AA比例的增加,共混膜材料表面的Zeta电位逐渐减小,从SF:AA=100:0~100:2.5,表面Zeta电位由-19.5mV下降至-27.7mV,表明共混后材料表面带有更多的负电荷。采用傅里叶红外光谱(FTIR)、X射线衍射(XRD)、X射线光电子能谱(XPS)对乙醇固化的SF/AA共混膜进行了组成和结构分析,FTIR和XRD结果表明己二酸可诱导丝素蛋白分子形成了β折叠结构,XPS结果显示共混后的丝素蛋白材料中引入了新的C=O基团,形成了新的酰胺键。使用EDC对己二酸与丝素蛋白进行交联,材料制备的丝素蛋白共混膜也具有良好的热水稳定性,SF:AA=100:1.5时,丝素蛋白分子达到充分反应。己二酸交联反应后的丝素蛋白水溶液Zeta电位逐渐减小,从SF:AA=100:0~100:2.5,Zeta电位由-2..7mV变为-5.4mV;丝素蛋白共混膜表面的Zeta电位明显也逐渐减小,SF:AA=100:0~100:2.5,表面Zeta电位从-14.3mV下降至-32.6mV,表明己二酸交联改性后丝素蛋白共混膜表面带有更多的负电荷。FTIR和XRD结果说明EDC交联己二酸交联改性丝素蛋白材料同样诱导丝素蛋白分子形成了更稳定的二级结构,主要是明显增加了丝素蛋白的β折叠结构,同时也伴随着少量的α螺旋和β转角。XPS结果显示改性后的丝素蛋白材料引入了新的C=O,-(CH2)4-基团,形成了新的酰胺键。综合热水溶失率、Zeta电位、FTIR、XRD和XPS结果,选择了 EDC交联己二酸交联改性的丝素蛋白样品SF:AA=100:0、SF:AA=100:1和SF:AA=100:2.5加载降钙素基因相关肽。己二酸交联改性丝素蛋白膜上加载降钙素基因相关肽,随着己二酸含量的增多而增多,在SF:AA=100:2.5的改性丝素蛋白膜上加载的降钙素基因相关肽的最大量为500ng/cm2,与己二酸交联改性丝素材料表面Zeta电位结果一致。己二酸交联改性丝素膜(SF:AA=100:2.5)上加载浓度为500ng/cm2的降钙素基因相关肽在三种pH(pH=5,7.4和9)下的释放情况,pH为5时降钙素基因相关肽释放一直较缓慢,而pH为7.4和9,降钙素基因相关肽在12h内释放较缓慢,在12h之后快速且大量释放。不同己二酸比例(SF:AA=100:0、100:1和100:2.5)的己二酸交联改性丝素膜上加载浓度为500ng/cm2的降钙素基因相关肽在pH=7.4的释放情况,SF:AA=100:0的材料在12h内快速释放,SF:AA=100:1和100:2.5的两种材料释放一直较缓慢。