论文部分内容阅读
随着通信技术的不断发展,通信频段内的信号日益密集。不同功率、不同带宽、不同调制模式的信号共存,使得实际通信环境愈加复杂。在信号侦察识别中,现代侦察接收设备必须具备在密集、复杂、动态变化的信号环境中实时对信号截获检测以及进行分类识别的能力。而且在目前的通信侦察中,对侦查距离提出了越来越高的需求,在远距离侦查中接收端实际接收到的信号已经十分微弱,此时环境噪声和仪器底噪都将对接收信号造成很大的影响,侦察设备需要在这种情况下将远端的微弱信号从噪声中提取出来,并对其进行识别。以上这些都对识别设备的灵敏度和抗噪能力都提出了新的要求。目前的通信侦查设备,一般是在几种已知或假设已知的信号下进行工作,对于信号未知且动态变化的环境,在实时处理中对接收信号的识别性能会有所下降。且目前的识别算法中,大多都是在理论层面进行研究,使用的信号源也一般由软件仿真产生,在实际应用中复杂度较高,不适合硬件实现。在以上背景下,本文首先研究了通信信号调制模式识别的发展现状,针对目前识别算法在工程实际中往往复杂度过高的问题,本文在输入信号动态变化的复杂情况下,提出了一种基于全数字接收机的调制模式识别算法,实现了其FPGA设计,完成了硬件识别平台的搭建,并基于硬件平台测试对实际采集的空口信号进行了接收识别,完成了算法识别性能的验证。在输入信号未知、侦查距离动态变化的复杂环境下,本文首先利用自动增益控制技术消除接收距离带来的信号能量动态变化的影响,将接收信号控制在一定范围之内。之后通过载波估计技术,去除接收信号的频偏。经过位同步技术同步收发时钟,最后通过载波同步跟踪剩余频偏,解调出基带信号。在此基础上,提出通过载波跟踪环的频偏跟踪曲线区分FSK和PSK信号,根据解调出的基带信号识别BPSK和QPSK信号的调制模式识别方案。在Quartus II开发环境下,完成了所提方法的硬件实现,使用硬件描述语言对整个系统进行RTL级建模,完成各模块的综合,通过SignalTap II完成其仿真功能的验证,实现了其FPGA设计和整体硬件平台的搭建。所使用的芯片为ADS5444和Stratix II系列EP2S180F1020C4。输入信号为中国电子科技集团在实际通信环境中采集的空口信号,仿真与测试结果表明,所设计系统能够在输入信号能量动态变化的情况下完成对信号的接收与识别,识别率满足实际工程需求。