双连续相TiCx-Cu金属陶瓷的制备及其性能研究

来源 :北京交通大学 | 被引量 : 0次 | 上传用户:zhl2707
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
金属陶瓷大多具有优异的力学性能、物理性能和化学性能,如高硬度、高强度、高弹性模量、耐腐蚀、耐磨损、良好的导电导热性,在诸如切削刀具、高速轴承、耐热涂层、耐磨部件、抗烧蚀材料等领域有着广泛的应用需求。然而,由于陶瓷相与金属相之间的润湿性通常较差,界面结合强度低,急冷急热环境下两相热失配以及受制于陶瓷相的较低韧性,使得金属陶瓷的应用受到很大限制。本研究的目的是探索制备一种新型的金属陶瓷,通过研究金属相与陶瓷相之间的界面润湿性与界面结合、设计材料的组织结构并探究合适的热处理工艺,提高金属陶瓷的综合性能,使其具有更高的应用价值。本论文首次探索以Ti粉和纳米乙炔炭黑为初始原料,通过原位无压烧结法制备非化学计量比的TiCx(x=0.5~0.7)多孔预制体,然后将金属Cu在无压条件下浸入多孔预制体的新技术路线,成功获得了具有双连续相结构的TiCx-Cu金属陶瓷;系统研究了TiCx的气孔率、晶粒尺寸与形貌、C与Ti的摩尔比等因素对TiCx-Cu金属陶瓷的微观结构和物相形态的影响;测试了所制备样品的强度、韧性、硬度和抗热震性能,分析了材料性能与其微观结构和物相组成之间的相关性;在此基础上,通过固溶处理使制备的TiCx-Cu金属陶瓷的断裂韧性和弯曲强度得到较大幅度的提高。论文取得的主要研究成果如下:(1)TiCx预制体的结构主要受造孔剂含量、烧结温度、保温时间和初始C与Ti的摩尔比等因素的影响。以造孔剂含量为唯一变量时,预制体TiC0.5的气孔率与造孔剂的添加量呈线性正比关系;造孔剂含量为定值时,随着烧结温度的升高及保温时间的延长,TiC0.5预制体的晶粒通过互相吞并而逐渐长大,预制体收缩,气孔率降低;随着C与Ti的初始摩尔比从0.5升高至0.7,预制体TiCx的x值从0.57升高至0.69,增加C含量会阻碍了TiCx晶粒的长大以及预制体的收缩,导致预制体晶粒尺寸减小,气孔率增大。(2)采用无压浸渗工艺制备了系列不同金属含量、不同化学计量比的双连续相TiCx-Cu金属陶瓷。结果表明,Cu与TiCx之间为反应型润湿,两相的界面结合牢固;在浸渗过程中,TiCx与Cu发生化学反应生成Cu4Ti新相,诱导Cu进入到TiCx晶粒内形成一种独特的根须状结构,同时,不同x值的TiCx(x=0.5,0.6,0.7)预制体浸渗Cu后,由于TiCx中的Ti原子逸出并与Cu发生反应,使得TiCx-Cu金属陶瓷中存留的TiCx的x值均趋于0.76。(3)由于特殊的双连续相结构和良好的两相界面结合,所制备的TiCx-Cu金属陶瓷表现出较高的强韧性。其中,TiC0.5-Cu金属陶瓷的三点弯曲强度为801±42MPa,断裂韧性为10.9±1.1 MPa·m1/2,而TiC0.7-Cu金属陶瓷的三点弯曲强度为1091±59 MPa,断裂韧性为14.8±0.6 MPa·m1/2。材料断口形貌表现为金属相的延性断裂、陶瓷晶粒的穿晶断裂、晶粒内部的金属根须拔出三种混合模式。裂纹扩展过程中发生的偏转、桥接、分叉和金属相拔出等机制显著增大了材料的断裂能,因而提高了材料的弯曲强度和断裂韧性。(4)对TiC0.5-Cu金属陶瓷在不同温度下进行了抗热震性能测试。结果表明,热震后材料的残余强度随热震温度的升高呈非单调改变。在热震温度低于800°C时,材料的残余强度随热震温度的升高而降低,经800°C热震后,其残余强度为535 MPa,比热震前降低了33.2%,但当热震温度升高到1000°C时,其残余强度反而比热震前升高了6.4%,达到852 MPa,而且经1000°C多次热震后其强仅略有降低。这种不同于一般材料的抗热震特性,可以归因于从1000°C高温急剧冷却所引起的金属相的晶粒细化,以及界面相的进一步适配性优化。(5)对制备的TiC0.5-Cu、TiC0.6-Cu和TiC0.7-Cu金属陶瓷进行固溶处理,探讨了固溶温度和时间对材料强度和韧性的影响。结果表明,固溶处理可显著提高材料的断裂韧性,同时对弯曲强度也有不同程度的改善,但是,对不同x值的金属陶瓷来说,其最佳的固溶温度和时间有所不同,对性能的改善程度也不一样。TiC0.5-Cu在925°C保温60 min固溶处理后,其断裂韧性和弯曲强度分别提高了32.1%和16.7%,达到14.4±0.5 MPa·m1/2和935±35 MPa;TiC0.6-Cu在925°C保温30 min固溶处理后,其断裂韧性和弯曲强度分别提高了15.6%和6.2%,达到16.3±0.6MPa·m1/2和963±23 MPa;TiC0.7-Cu在925°C保温10 min固溶处理后,断裂韧性和弯曲强度分别提高了11.5%和4.9%,达到16.6±0.8MPa·m1/2和1145±84 MPa。TiCx-Cu金属陶瓷强韧化提高主要归因于固溶处理使金属相晶粒显著细化以及金属相的固溶强化。
其他文献
学位
学位
学位
学位
学位
学位
学位
学位
学位
学位