【摘 要】
:
自工业化以来,哈柏法合成氨作为人工固氮的主要方式,极大地推动了农业地发展。但哈柏法带来的能源、环境问题日益凸显,主要体现在优质电力和甲烷的消耗以及大量的碳排放,因此亟需发展绿色的新型人工固氮技术。近年来,低温等离子体因其高反应活性和不平衡态的优势,在固氮领域得到了广泛关注。但现有相关研究中缺乏基础研究且固氮效率偏低。本文基于磁旋滑动弧等离子体进行了氧化型固氮实验,研究了磁旋滑动弧等离子体进行N_2
【基金项目】
:
国家自然科学基金青年项目(磁旋滑动弧空气等离子体耦合催化固氮的机理研究,No.51806193); 国家自然科学基金项目(单原子催化耦合低温等离子体活化固氮的基础研究,No.51976191);
论文部分内容阅读
自工业化以来,哈柏法合成氨作为人工固氮的主要方式,极大地推动了农业地发展。但哈柏法带来的能源、环境问题日益凸显,主要体现在优质电力和甲烷的消耗以及大量的碳排放,因此亟需发展绿色的新型人工固氮技术。近年来,低温等离子体因其高反应活性和不平衡态的优势,在固氮领域得到了广泛关注。但现有相关研究中缺乏基础研究且固氮效率偏低。本文基于磁旋滑动弧等离子体进行了氧化型固氮实验,研究了磁旋滑动弧等离子体进行N2/O2混合气体和空气放电时的物理特性和固氮效能,并在此基础上进行了等离子体活化水的制备,研究了等离子体耦合催化对于固氮产出的提升效果。本文主要的研究内容和结论如下:(1)研究了不同放电参数(气流量、氧气含量、电源输出电压)下,磁旋滑动弧放电的电参数特性、电弧动态特性和固氮效率。结果表明,气流量为4L/min时,NOx浓度最高可达15200 ppm。在12 L/min的气流量和20%的氧气含量下,固氮能耗可低至4.17 MJ/mol N。气流量增加时,生成的NOx浓度下降,但能量效率上升。合适的氧气含量区间为20%-30%,过高或过低的氧气含量将提高固氮能耗并使NOx浓度降低。电源输出电压与放电电流呈正相关关系,对NOx浓度的影响较小,降低电源输出电压将降低放电功率和固氮能耗,但不利于放电的稳定性。(2)采用发射光谱对磁旋滑动弧等离子体放电进行了分析,在固氮实验工况下,NO-γ、N2(C-B)和N2+(B-X)谱带清晰可见,基于光谱数据计算得到磁旋滑动弧中N2的振动温度和转动温度,前者远高于后者,可见磁旋滑动弧等离子体的不平衡态程度很高。改变气流量或氧气含量,NOx浓度与N2振动温度的变化趋势相同。基于实验参数求解Boltzmann方程发现,磁旋滑动弧等离子体的约化场强(27-38 Td)有利于电子能量向N2振动能的转化,能量选择性高。(3)进行了磁旋滑动弧耦合催化空气固氮实验研究,基于上述基础实验,在催化剂的存在下,制取等离子体活化水。研究发现,Mo O3对于固氮效果有良好的提升作用,而γ-Al2O3和低负载量(5 wt.%)的Ni O/Al2O3不适合用做磁旋滑动弧固氮的催化剂。各负载量(5 wt.%、7.5 wt.%、10 wt.%)的Mo O3/Al2O3均有显著催化效果,能够有效促进N2的氧化并提高NOx气体中NO2的比重,使等离子体活化水中NOx-的浓度大大增加。
其他文献
本文以宋元时期将乐窑的制瓷工艺为研究重点,以万全碗碟墩窑和南口下瑶窑作为研究对象,对两窑场产品进行了全面的取样分析,从原料、配方、工艺、生产工具等方面入手,探讨胎釉配方、成瓷工艺、原料加工、窑具使用等,充分揭示了宋元时期将乐窑的主要面貌。万全碗碟墩窑于2016年进行了系统发掘,窑业遗迹保存完好,产品主要有青白瓷、青瓷、酱釉瓷等。瓷胎的分析表明制胎原料主要可分为三类,大部分属于高硅低铝类型的瓷石质原
木质纤维素类生物质在自然界中储量巨大,在实际应用中往往由于人们的忽视造成了巨大的浪费。目前碳材料主要来源于化石燃料,其应用过程会带来一些环境上的不利影响。采用木质纤维素类生物质为原料制备高附加值碳材料是解决上述问题的有效方案,生物质基碳材料的孔隙结构可调与表面性质可控性也为其应用带来了诸多可能性。本文以木质纤维素基碳材料为研究对象,进行了活化碳化过程的热重红外实验,并对产品炭的性质进行了表征,总结
在电子科技飞速发展的今天,人类的实际生产生活对各类介质材料的要求越来越高,在不断追求卓越性能的基础上,如何在无铅介质中得到与铅基介质一样优秀的性能成为了研究人员关注的热点问题。在无铅介质材料体系中,钨青铜结构由于其自身特殊的结构与性能脱颖而出,成为除钙钛矿外的第二大材料结构。铌酸钡钠(Ba2NaNb5O15)是一种充满型钨青铜结构材料,其铁电相变发生在560℃左右,各个位置离子占位较为复杂。因此,
近十几年来,Pickering乳液和Pickering气泡在化学工程、材料科学、制药工程、药物输送和生物化学等各个领域受到相当大的关注。众所周知,乳液或气泡可以通过小分子或一些大分子表面活性剂稳定,但其中一些表面活性剂具有较高的毒性,甚至具有致癌性,并且由于热运动,分子表面活性剂在界面上的吸附和解吸附处于动态平衡状态,乳液易发生聚结和奥斯特瓦尔德熟化,最终导致相分离。Pickering乳液/Pic
近年来,具有生物相容性和生物可降解性的聚酯材料越来越受到高分子科学家们的关注。这类材料不仅无毒害、易降解,还具有生物来源、制备过程安全环保等优点,因此目前已被广泛应用于包装材料、餐具容器、工程薄膜、服饰衣料和生物医学等领域。传统的石油基聚烯烃类材料往往难以降解、易造成白色污染,相比之下聚酯类材料要更符合绿色化学的可持续发展的理念。所以,对生物可降解性聚酯材料进行研究具有重大意义。大量研究表明,聚合
在过去的几十年中,可见光驱动的光催化技术作为一种绿色环保的新技术,具有节能、无二次污染等优点,在化工基础研究和实际应用中都取得了重大突破。一般,单一的半导体光催化剂存在可见光响应范围窄、量子效率低、活性位点不足等问题,导致太阳光利用率较差、光催化活性较低。多组分复合光催化剂不仅能够整合其单一组分的优异性能,而且各组分之间构建的异质结可以有效地促进光生载流子的分离,使得其展现优异的光催化性能。三嗪基
随着人类的发展,对能源的需求也在不断增长,而目前主要使用的化石燃料储量有限,并且会带来环境污染问题。太阳能以其巨大储量与清洁等特点成为越来越多研究者关注的重点。但太阳能的间歇性与极低的能量密度使得其必须转换成其他形式的能源才能更方便人们使用。氢能作为一种绿色、清洁的二次能源,是太阳能转化的优质对象。因此利用太阳能分解水制氢良好匹配了现代能源架构,满足可持续发展的需求。本课题组提出的两步式光热协同法
本文主要采用静电纺丝技术,将聚合物(油溶性PAN、PAA和水溶性PVA、PVP一种或其混合物)同金属有机骨架聚合物(ZIF-8、ZIF-67)混合,制备ZIFs@聚合物静电纺丝纤维。然后通过热解炭化、酸洗和活化等过程,得到ZIFs@聚合物基分级孔柔性炭纤维膜材料。结合一系列分析测试设备:光学电子显微镜、扫描电子显微镜(SEM)、X-射线粉末衍射仪(XRD)、红外光谱分析(FTIR)和热重分析仪(T
工业气体应用广泛,现代社会发展对工业气体的需求量日益增大,低温精馏方法是大规模生产高纯工业气体产品的最有效方法。目前,低温空分设备正在向大型化发展,其能耗问题日益突出。低温精馏塔是空分系统的关键部机,针对其内部的填料性能优化成为节省空分系统能耗的主要方法之一。填料的优化从几何结构形式的寻优逐渐发展到表面局部结构的优化。表面微结构处理作为表面优化的主要方向之一,在常温流体领域的研究已十分深入,但缺乏
高效液相色谱(HPLC)具有分离效率高、检测灵敏度高、自动化程度高、应用范围广等优点,已成为最常用的分离、检测和分析手段。将其与高选择、高灵敏的质谱仪(MS)联用后,HPLC-MS兼具HPLC和MS的优势,能够满足药物监测、环境分析、食品安全、生物医学、天然产物等多个领域的定性和定量要求,得到了越来越广泛的应用。在前人的工作基础上,我们围绕液相色谱-高分辨质谱联用技术(HPLC-HRMS)在小分子