论文部分内容阅读
世界范围内能源利用面临着严重的问题,存在能源利用效率低和换热器笨重的缺点,使该系统的经济可行性有所降低。在板翅管换热器中,为了得到高效率的能源转化技术,建立数学模型对换热器进行优化分析,使用场协同理论(FSP)作为强化传热的方法和理论依据。抛物型能量方程使用格林函数结合加权残差方法求解得到温度分布。然后,通过对管壁面几何参数和等温边界的对流换热系数进行分析建立协同场。为了方便求解和自定义,使用FLUENT软件,一个离散的通用的传递方程被使用,该方程基于湍流对流传热,用于求解协同作用。数值模拟被认为在圆形和椭圆形管束的平移周期边界条件下有有限的压力梯度。从得出Nu数的结果表明,对流换热不仅取决于温差、流体速度和流体性质,而且取决于流场和温度场之间的场协同角和场协同数。当增加进口流速时,椭圆形管束中传热效果显著增强,场协同数增加,场协同角减少。在相同的操作工况下,圆形管束设计和椭圆形管束设计所得平均场协同角分别为78.97°和66.31°使用场协同优化后板翅管换热器的椭圆形管束,与圆形管束相比,场协同角和场协同数分别增加22.68%和35.98%。由于没有实验验证第一演绎的场协同原理,本文通过实验分析加热平板表面的协同情况,实验使用热成像系统和快速照相机得到温度场和流场。通过设置四种不同射流高度和射流速度,在Re数为2,602~6,505之间时,使用场协同原理对所得流场和温度场进行优化分析。基于平板射流得到的场协同分析方程被用来研究由实验得耢向加热平板的温度场和流场之间的协同作用,尤其是中心积分区域得到的有清晰速度流线的流场和温度场之间的协同作用。传热过程的不可逆性可表示为火积(Entransy)耗散极值原理EED,熵产最小化原理MEG,外部泵功耗原理EPWC,和火用(Exergy)损最小化原理EDM。板翅管换热器的对流层流和湍流传热的场协同方程是基于耗散极值原理进行的,而其他的传热过程只进行层流对流换热场协同方程以减小计算成本。将传热过程粘性耗散及其产热过程的不可逆性设为单一目标优化约束条件,通过泛函变分数值模拟,构建附加体积力的动量方程与能量方程进行耦合,然后得到稳定的层流对流换热最优场协同方程。场协同方程的解给出了优化后的流场,从管表面到两管之间区域的旋涡尺寸不断减小,在管束中随着流体流动Nu数不断增加。根据以上不同的原理进行优化分别得到的最优协同场有不同的粘性耗散效应。通过这种新的优化方法获得最优速度场方程,进而得到稳定的层流对流换热最优速度场。除此此外,数值研究得到显式二维不可压缩流解析解,这些解是完全或非协同的。这些解是在边界上协同的,使协同作用仅发生在流体和管表面之间的边界。这些解除了具有验证完全或非协同存在的可能性的理论意义,还可以用于进一步检查某区域的协同效果的准确性和有效性,为选择和设计合适的强化换热设备提供参考。最后,使用以速度优化模式作为方向,设计出倾斜涡发生器,在实际的设备可以引入使用。倾斜的涡发生器能产生涡旋流动,以提高整体流场层流与湍流之间的热交换。作为说明性的例子,对在板翅管换热器中有无涡发生器换热和流动进行场协同角分析,结果表明,在管壁上下表面附近安装涡发生器后得到最优的场协同角为86.53。,效能因子为PEC=2.33。