论文部分内容阅读
模式的特征表示及提取是模式识别中的一个重要问题,特征表示及提取的有效性对于分类等问题的解决具有决定性作用。在诸如计算机视觉等领域中,数据往往具有较高维数,此时,出于计算可行性的考虑,需要能够用具有较低维数的特征来表示原始数据的形态特征。子空间方法是一类为人们所关注并被广泛应用的特征学习方法,尤其是在解决高维模式识别问题方面被证明是十分有效的。传统的子空间方法采用批处理的方式进行特征学习,最近几年,增量式子空间方法的研究开始受到人们的关注,这一类子空间方法可以使用最新得到的观测数据对特征表示进行动态更新,增量式子空间方法的这一特性使得该类子空间方法可以实现在线学习,即在进行模式分类的过程中使用待分类样本进行特征学习。在线学习的优点在于它可以充分利用模式分类任务执行过程中获取到的大量输入样本。在很多应多场合中,训练阶段所能获取到的样本数量有限或者训练样本的分布不具有很好的代表性,此时,单纯依靠训练样本所提取到的特征根本不能够胜任构建可用分类器的任务。在这种情况下,在线学习算法则能够通过在线学习的方式在一定程度上克服训练阶段的训练不足问题。此外,在非静态系统中,观测样本的概率分布情况是处于不断的变化中的,此时,通过训练样本所获得的静态特征模型往往不能适用于对观测样本的分类任务,在这种场合下,在线学习算法可以凭借对特征模型的持续调整来跟踪观测样本概率密度分布的变化。本文基于最近被提出的一种增量式子空间方法—叶分量分析方法(LCA),提出一种在线学习算法—LCA-BOLL。本文所提出的在线学习算法具有不同于以往子空间在线学习算法的特征:(1)LCA-BOLL的特征分量具有类标号信息;(2)LCA-BOLL结合了监督学习与非监督学习;(3)LCA-BOLL的在线特征学习过程与模式分类过程是紧密结合的。本文将所提出的LCA-BOLL算法应用于静态图像人脸识别及图像序列中的人脸识别问题中。在静态图像人脸识别应用中,LCA-BOLL方法被用于解决训练样本数目较小情况下特征学习算法所遭遇的小样本量问题。在图像序列人脸识别问题中,针对人脸姿态角度变化较大的问题,我们提出一种用LCA-BOLL来解决这一问题的方法。通过实验,我们证明LCA-BOLL能够有效得解决上述问题。在人脸识别问题中的成功应用表明了LCA-BOLL算法在对样本空间特征进行在线学习的有效性。