论文部分内容阅读
人脸表情识别是人工智能与人机交互领域中的一个重要课题,目的是实现计算机自动识别人的表情,进而分析人的情感与心理。这将进一步增强人机交互的友好性与智能性,因此有着很高的研究价值和良好的应用前景。人脸表情识别系统一般包括人脸检测、特征提取、表情分类等环节。本文主要研究了特征提取和表情分类过程中的一些关键问题,分析了现有算法中的不足,提出改进算法,并进行了仿真实验。主要的工作如下:第一,改进Gabor特征提取算法。提出一种Gabor特征选择方法,利用分布估计算法对Gabor滤波器组的尺度和方向进行优化选择,选择出最佳的Gabor核的尺度和方向,并在此基础上提取特征。在日本的JAFFE表情数据库上的实验结果表明,无论在计算量还是识别性能上都比传统的Gabor滤波器组更具有优势。第二,提出双向二维直接线性判别分析算法。该算法从水平和垂直两个方向对图像矩阵执行直接线性判别分析,进行列和行的两次维数压缩,降低了特征维数。在JAFFE人脸表情数据库中的实验结果表明,算法在提高了降维能力的同时,也提高了识别率。第三,将二维判别保局投影算法应用到人脸表情识别的特征提取中。在JAFFE表情库的实验中,分析比较了二维判别保局投影算法较之于二维保局投影算法在表情特征的识别与分类中的异同及优势。第四,提出一种基于多特征集成分类器的方法进行人脸表情识别。构造一个基于神经网络的集成分类器模型,对多特征多分类器的输出进行决策融合。在JAFFE表情库的实验中取得了令人满意的结果,体现了多特征集成分类器的明显优势,也充分说明了神经网络的集成分类器模型的准确性和稳定性。实验结果表明,本文改进的Gabor特征提取算法、提出的双向二维直接线性判别分析算法,在提高了降维能力的同时,也提高了识别率。提出的多特征集成分类器的方法在JAFFE表情库可以实现91.43%的最高识别率,识别效果令人满意。