高线性微波光子上变频技术研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:lhl1208
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
变频技术主要用于微波信号的频率上转换或下转换,是现代无线通信和雷达等系统的关键技术之一。近年来微波光子技术因其大带宽、低传输损耗、高射频隔离、抗电磁干扰等特性,在微波变频领域呈现出极大的性能优势和潜在的应用前景,相关研究受到广泛关注并取得了良好的进展。然而微波光子变频过程中的电光调制、光电转换等产生的非线性杂散分量会限制系统的无杂散动态范围,从而影响变频系统的性能。本论文针对如何实现微波光子变频的高线性度、大动态范围开展研究工作。首先介绍了微波光子变频技术的应用背景、技术优势和发展历程。接着给出了微波光子变频系统中主要光电器件的工作原理和变频系统性能的衡量指标。对微波光子变频链路进行系统建模,以基于强度调制的微波光子链路为例,仿真分析了主要光电器件的参数对无杂散动态范围的影响,以及微波光子链路前后端连接电放大器对系统动态范围的影响。在理论分析基础上,研究了一种基于载波抑制单边带调制(CS-SSB)的微波光子上变频方案。通过数学推导和软件仿真对该方案进行了优化设计,并搭建了变频实验系统。实验测试结果为,2GHz的中频信号上变频至18GHz,无杂散动态范围(SFDR)达到100.6d B·Hz2/3,承载16QAM数字信号的2GHz中频上变频至18GHz后,解调输出信号的误差矢量幅度(EVM)为2.99%,研究结果表明,该方案具有良好的变频能力和无杂散动态范围。为了进一步提升变频系统的无杂散动态范围,提出了一种主动抑制交调分量的微波光子上变频方案,该方案通过优化分配进入并行双驱动马赫-曾德调制器(DD-MZM)的射频功率和光功率,来消除三阶交调非线性分量。对该方案的工作原理进行了理论推导,并进行了建模仿真和优化设计。搭建了该方案的变频实验系统,实验测试结果为,中频信号2GHz上变频到18GHz上变频信号,无杂散动态范围为111.9d B·Hz4/5,验证了该方案提升变频系统线性度的有效性。
其他文献
固体激光器在国防建设、国民经济、科技研发及日常生活等领域均有广泛应用,薄管激光增益模块是固体激光器中实现高光束质量和高平均功率激光输出的关键器件。随着激光器不断向高功率和小型化方向发展,给薄管激光增益模块的机电液一体化设计提出了更高的要求,本文从理论分析、设计和试验等方面开展薄管激光增益模块研究,主要研究内容如下:(1)根据激光传输对薄管装调、冷却、密封和供电要求,确定了薄管激光增益模块的总体结构
随着科学技术的快速发展,人们对电子产品性能提出了越来越高的要求,电子产品或电子工业在国民经济中的重要作用越来越突出。而电子产品的小型化、复杂化、轻量化、多功能、高可靠、长寿命促进了片式电子元器件(如片式电阻、片式电容、片式电感等)的生产和发展,促进了第四代组装技术即表面贴装技术(SMT)的出现。这种组装技术对电子元器件表面镀覆的可焊性镀层的性能要求较高,在片式元器件的生产工艺中,常使用电镀的方法获
人脑通过大量的突触和神经元来执行学习和记忆功能,能够并行处理和存储大量的信息,比当前通用的计算机具有低得多的功耗和更加高效的处理信息能力。突触是人脑中信号调制和传输的基本单元,通过突触间隙将前神经元的信号发送到后神经元,同时实现信息的加工和存储。因此,开发一种类似于生物突触的器件将有利于发展神经形态计算,突触器件因此成为近年来研究的热点。忆阻器在结构及信息传递上都与生物突触相似,还具有结构简单、制
近几十年来,激光焊接因其注入能量易控、影响范围小及焊接速度快等特点,逐渐成为材料焊接的重要手段。但在焊接过程中材料表面产生的等离子体,会与激光发生强相互作用,进而降低焊接质量。研究激光焊接过程中等离子体的相互作用,特别是等离子体对激光的能量吸收,在激光应用上具有重要意义。本文采用激光焊接实验中典型的物理参数,利用开源SMILIEI程序采用Particlein-cell(PIC)方法近似求解弗拉索夫
近年来,随着科技水平的不断进步,高性能光电探测器在光通讯、太空探索、军事国防等领域被广泛地应用。然而基于传统硅基材料或其他三维半导体材料制备的光电探测器通常制备在刚性衬底上,存在易碎、造价昂贵、制备工艺复杂等问题,很难用于制备新型柔性光电探测器。随着卤化铅钙钛矿材料自身卓越的光电性能被研究证实,以及可以被制备成具有优秀机械柔韧性的低维材料,其被认为是制备高性能透明柔性光电探测器的有力候选材料。然而
随着时代的发展,航空航天领域越来越成为国家综合国力的重要标志,它的发展给人们的生活带来了各种便利,更为国防事业提供了重要保障。太空的辐照环境极其恶劣,其中的高能粒子会使应用在航天器中的专用集成电路(Application Specific Integrated Circuit,ASIC)芯片产生辐照效应,如单粒子效应、总剂量效应等。其中单粒子翻转(Single Event Upset,SEU)是最
FPGA(Field Programmable Gate Array)由于具有灵活的可配置性,被广泛应用于科研及商业领域。其中SRAM型FPGA因其资源丰富、性能强和可重配置等优点,受到航天领域的青睐。但不同于地面环境,空间环境中存在众多辐射效应,包括总剂量效应(Total Ionizing Dose,TID)和单粒子效应(Single Event Effect,SEE)。而SRAM型FPGA因其
大功率型LED作为一种“绿色光源”已普遍应用于各种照明领域,倒装芯片结构能够改善大功率型LED散热能力差和光衰严重的缺陷,Au-30 at.%Sn共晶钎料凭借优异的综合性能成为大功率型LED倒装芯片焊料凸点材料的首选。叠层电镀法能够精确控制Au-Sn合金的成分,满足微凸点的制备要求,具有操作简单、实验重复率高、回流后组织均匀等优点。目前,工业生产中使用的Au-Sn合金电镀液含有高毒性的氰根离子,不
激光诱导击穿光谱(Laser Induced Breakdown Spectroscopy,LIBS)是一种原子光谱分析新技术,具有远程、原位、在线、无需样品预处理,兼备全元素分析等优点。LIBS技术在环境监测、冶金工艺、爆炸物检测、生物医学等众多领域表现出巨大的应用潜力。目前,LIBS定量分析准度较低是制约该技术发展的关键因素。本文工作重点围绕提高LIBS定量分析的准确度以及发展新方法展开。相比
金属卤化物钙钛矿的通式为ABX3,其中A为甲基铵,甲脒或Cs,B是Pb或Sn,X通常为Cl,Br或I。由于其显著的光物理性质和广泛的组分可调,这些化合物在各种光电应用中显示出巨大的前景。其中,微晶的尺寸和形态可能对其化学和物理性能产生明显影响,因此会影响其光电应用。一维卤化物钙钛矿纳米线在一维上具有优异的载流子传输,高结晶质量等特性,其有趣的物理性质及其作为电子、光电子、传感、和纳米尺度中各种应用