【摘 要】
:
羟基氯化物种类繁多,大多以M2(OH)3Cl和M(OH)Cl的形式存在。两者在组成和结构上存在较大的差异,同时均具有独特的结构特征和性质,可以作为反铁磁性材料和范德瓦尔斯材料,也可以应用于气敏、光催化和太阳能电池等领域。因此,对羟基氯化物开展广泛而深入的研究具有十分重要的意义。压力作为一种独立于温度和化学组分之外的热力学参量,能够有效缩短物质内部原子间的距离,调节电子自旋,进而改变材料的晶体结构、
论文部分内容阅读
羟基氯化物种类繁多,大多以M2(OH)3Cl和M(OH)Cl的形式存在。两者在组成和结构上存在较大的差异,同时均具有独特的结构特征和性质,可以作为反铁磁性材料和范德瓦尔斯材料,也可以应用于气敏、光催化和太阳能电池等领域。因此,对羟基氯化物开展广泛而深入的研究具有十分重要的意义。压力作为一种独立于温度和化学组分之外的热力学参量,能够有效缩短物质内部原子间的距离,调节电子自旋,进而改变材料的晶体结构、原子间的相互作用以及电子结构,甚至形成高压新相。因此,高压研究有可能为深入认识羟基氯化物材料的结构、性质及其变化规律提供一种新的途径。本研究采用两种方法,分别合成出了高纯度和高结晶度,且具有特殊形貌的羟基氯化铜及羟基氯化锌材料,并对其结构及物性进行了表征与分析。主要研究结果有以下三个方面:(1)采用水热合成法,制备出羟基氯化铜晶体clinoatacamite(γ-Cu2(OH)3Cl)。通过粉末X射线衍射、理论模拟及精修确认了制备的样品属于单斜晶系,空间群为P21/n(14)。通过SEM和TEM观察发现其形貌为微米级的八面体。讨论了clinoatacamite结构中的笼目晶格和三聚氢键,并利用拉曼散射光谱、红外吸收光谱和紫外-可见吸收光谱对其光学性质进行了表征、分析和研究。通过磁性测试发现γ-Cu2(OH)3Cl在TN=6.1 K发生反铁磁相变,低温下呈现类自旋玻璃态。(2)利用固相-固相合成法,制备出羟基氯化锌晶体(Zn(OH)Cl),通过粉末X射线衍射研究确认制备的样品为正交晶系的晶体,空间群为Pcab(61)。通过SEM和TEM进行观察,发现样品的形貌为厚度约为30 nm的形状不规则的薄纳米片。讨论了Zn(OH)Cl晶体的二维层状结构及其层间氢键,并利用红外吸收光谱、拉曼散射光谱、紫外-可见吸收光谱对样品的光学性质进行表征,研究了其成键情况和光学带隙等信息。(3)利用原位高压同步辐射X射线衍射技术,研究了γ-Cu2(OH)3Cl在高压下的压缩行为。进行了高压拉曼散射光谱测试,分析了拉曼振动模式随压力变化的现象。发现样品在高压下发生了等结构相变,氢键的强度和构型发生改变,在姜-泰勒效应和压力的协同作用下,晶体结构中的Cu原子发生笼目层内和层间的位置交换。
其他文献
稀土掺杂微纳米发光材料由于其发射带窄、毒性弱、寿命长等优点,在许多应用上获得广泛关注,如光学温度传感、细胞成像、医疗、防伪、太阳能电池和植物生长灯等领域。为了提高材料的利用率以及满足生产生活的需要,多功能材料的开发和探索势在必行。此外,稀土发光材料仍面临着稀土离子掺杂浓度低的困境。掺杂浓度的增加会使掺杂剂之间的距离减小,这必然会增强发光中心之间的相互作用,导致发光强度减弱。所以,为了能够实现稀土离
半导体微腔中激子极化激元玻色爱因斯坦凝聚,是一个新兴的热门研究领域,衔接融合了激光物理、量子光学和固体物理等多门学科,被视作研究新物态规律、发现新奇量子现象、开发新型器件的理想平台,于2006年首次在二维半导体微腔结构中被实验证实。半导体微腔中激子极化激元玻色爱因斯坦凝聚的光-物混合机制使其具有低阈值、近室温操控、强非线性和微纳固态化等物理特性,这些特性有利于实现集成化和器件化,使微腔激子极化激元
碳达峰、碳中和是我国积极应对气候变化的国策,既是从现实出发的行动目标,也是高瞻远瞩的长期发展战略。“环境材料概论”是环境科学与环境工程专业重要的专业选修课。在碳中和背景下,从教学内容、教学模式、实践教学等方面就“环境材料概论”课程开展了教学改革的探索和实践研究。研究表明,通过融入碳中和政策、创新“案例+研讨”式教学模式、强化实践教学等对课程进行优化,既有助于学生了解学科方向与前沿,又能强化其节能减
随着高压实验技术和基于第一性原理晶体结构预测方法的发展,许多非常规化合物陆续被理论预测和实验合成,这些化合物表现出独特的物理化学性质。我们采用第一性原理计算方法结合随机结构搜索方法,对高压下Rb-F化合物的稳定配比、晶体结构、电子性质及化学键性质进行了系统的研究,发现了若干个新型的铷氟化合物,得到了以下创新性研究成果:(1)在0~300 GPa压力范围内,我们预测了多个热力学稳定的新型化合物Rb
研究原子的超精细相互作用是了解原子核的结构、性质以及电子关联效应的一种有效途径,精确可靠的超精细结构(HFS)常数有助于人们解决核外电子与原子核之间相互作用引起的一些复杂问题。随着现代各种大型地基望远镜和太空望远镜等天文观测技术的发展,人们已经可以获得大量高分辨率的天体光谱,这使得光谱的许多特征可以被分辨出来。除了谱线的波长和振子强度这些基本的原子数据外,天体光谱的分析还需要关于谱线加宽效应的数据
随着人类社会的高速发展,能源短缺问题,以及由传统石化燃料大量燃烧衍生的环境问题正变得日益严峻,而氢气燃烧性能好且产物环境友好,已成为最具发展潜力的新能源。但由于缺乏安全高效的储氢材料,氢能还没有得到很好的应用,研究新型高效且稳定的储氢材料成为学界与工业界亟待解决的问题,富氢超价化合物是一种潜在的储氢材料。一般而言,在超价化合物中,H元素很少作为配体出现。但前人的研究表明,高压条件下合成了三元超价化
金属卤化物钙钛矿由于其光学吸收系数大、电荷载流子迁移率高、载流子扩散长度长等优点,被认为是激光应用的优良增益介质。因此,基于金属卤化物钙钛矿材料的微腔在集成光电芯片领域具有广阔的应用前景。本文系统地研究了CsPbBr3微米片的化学气相沉积法制备及其温度依赖的自发辐射和光激射特性。取得了如下结果:(1)利用基于石英管式炉的化学气相沉积法合成了高质量的CsPbBr3微米片。通过调节载气流速、反应压力等
超构材料以其超越天然材料的新奇特性,已然成为现代科学的研究热点之一,被广泛应用于工业、军事、生活等各个领域,具有广阔研究前景。特别是电磁超构材料,对微电子通讯、光/物质相互作用、人工磁性以及新能源利用等技术产生了深远影响。本文将针对基于超构平面的人工磁性材料展开研究。在前人的研究中,人工磁性超构表面大多使用金属材料,利用等离子体集体震荡原理来构建,这将不可避免的增加介质损耗,阻碍人工磁性结构向高频
铯卤化铅钙钛矿量子点(CsPbX3,X=Cl,Br,I)因具有宽的发光色域、高的荧光量子效率(photoluminescence quantum yield,PL QY)、窄的荧光光谱线宽、高的载流子迁移率和良好的力学性能等优点,使其在刚性和柔性显示和照明领域具有较好的应用前景。但较差的水氧稳定性阻碍了钙钛矿量子点的商业化,并且钙钛矿层有限的柔韧性限制了其在柔性光电器件方面的应用。而目前关于通过优
在没有外界刺激的作用下,物质的物理性质与化学性质相同,并且和其他物质拥有明显分界的聚集态被称为相。在外界刺激(如压力,温度)的作用下,物质会从一种相转变成为另一种相,这个过程叫做相变。在物质发生相变的时候其微观结构会发生突然的变化,进而会对物质的物性和宏观特性产生影响。相变对物质结构的研究有着极其重要的意义。在热力学中,压力与温度是两个非常重要的参数。压力可以改变原子排列方式、原子间距、电子轨道结